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A theory for the nematic-isotropic (N-I) phase transition of prolate uniaxial 
molecules with longitudinal dipole moments is presented. The theory is based 
on the variational cluster expansion, truncated after the two-molecule term, and 
is implemented for polar hard spherocylinders with and without attractions, and 
for polar linear arrays of Lennard-Jones interaction centres. We find that the 
dipole interactions substantially shift the N-I transition temperature and 
strongly promote antiparallel molecular association, but have a weak effect on 
the order parameters, the pressure, and the N-I coexistence densities. The effect 
of dipoles on phase stability is very sensitive to their position within the 
molecular frame. Off-centre dipoles are shown to give rise to phase re-entrance 
according to the sequence N-I-N on heating at constant density. The theory 
does not predict a stable ferroelectric nematic phase. 

I. Introduction 

The history of electric dipole interactions in molecular theories of liquid crystals 
dates back to the suggestion of Born [1] that the formation of liquid crystalline 
phases is a result of such interactions. Although it is now well established that the 
essential condition for liquid crystallinity is the anisotropy in the shape of the 
molecules [2] and not the presence of dipole moments, the latter are known to give 
rise to various phenomena in mesophases of compounds with strongly polar groups. 
Thus dipolar interactions have been attracting considerable attention over the last 
two decades in connection with ferroelectricity [3], smectic phase structure [4], 
molecular association [5, 6-1 and phase re-entrance [7] phenomena. 

The role of dipolar interactions in the stabilization of mesophases has been the 
subject of recent theoretical investigations by analytic [8, 9] and computer simulation 
[10-14-1 methods. Such studies are motivated to a large extent by expectations 
[15, 16] that a polar (ferroelectric) nematic phase might be achievable. In spite of 
the valuable insights gained, especially from the simulations, the precise role of the 
dipolar interactions is not fully understood in general. The main reason for this is 
that the dipolar interaction always appears in combination with the basic shape 
anisotropy and possibly with other localized interactions. The reflection of such 
interplay of interactions on the physical properties of the phase is often rather 
sensitive to the details of the molecular structure [17]. For example, it was recently 
demonstrated [18, 19] that, depending on their position and orientation within the 
molecular frame, dipole moments can have a substantial influence or practically no 
effect at all on nematic ordering. To fully appreciate the effects that could be produced 
by polar groups it is therefore necessary to study the simultaneous dependence of the 
theoretical predictions on a number of molecular parameters. This scanning of phase 
behaviour visa vis molecular parameterization is difficult to do by computer simula- 
tions since as a result of the long range of the dipolar interaction, such simulations 
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are too time consuming to be carried out over the full field of the relevant parameters; 
furthermore, they are not free of ambiguities regarding the use of boundary conditions 
[10, 11, 14]. Analytic calculations, on the other hand, are based on statistical 
mechanical approximations but they are more efficient for a coarse scanning of the 
conditions under which the effects of dipolar interactions would be enhanced. 
Accordingly, the results of such calculations could guide experiments and computer 
simulations by narrowing down the field of molecular parameters over which 
interesting dipolar effects could be observed. It is in this spirit that we undertook 
the present study. 

This paper is part of a more general investigation of dipolar interactions in liquid 
crystals. It addresses theoretically the influence of molecular polarity on the 
nematic-isotropic phase transition for the simplest and most common case of 
mesogens, namely, elongated uniaxial molecules. Our intention is to attempt a 
rationalization of the general characteristics of dipolar effects in these systems rather 
than to provide quantitatively accurate results. In accord with such an intention we 
have chosen to use an analytic approach based on the variational cluster expansion 
[20] of the free energy. This approach, compared to others that have been used to 
describe dipolar interactions in liquid crystals [8, 9, 16, 21, 22], combines the 
following advantages: 

(a) its accuracy is systematically upgradable by including contributions from 
higher-order clusters, while statistical mechanical consistency is maintained 
at each level of approximation; 

(b) it is applicable to fluids of any symmetry as well as to solids; 
(c) it allows the explicit modelling of intermolecular interactions to any detail 

(as opposed to the implicit introduction of interactions, for example, via 

correlation functions), and this modelling is not restricted by, or coupled in 
any way to, the level at which the statistical mechanical approximation is 
implemented. 

The latter feature is particularly important since the manifestation of dipolar effects 
is in general sensitive to a number of molecular factors, aside from the magnitude of 
the dipole moment, and therefore such factors should not be restricted or distorted 
in order to comply with the statistical mechanical approximation employed (as is 
the case, for example, with lattice models [21] or with decoupling schemes [16, 23]). 

In the present calculations the variational cluster series is truncated past the 
two-molecule terms, thus providing the lowest order approximation that allows the 
description of phase transition properties from the explicit form of the intermolecular 
potential. Because of its more general applicability to liquid crystals, this procedure 
is described in some detail in section 2, where the free energy for a positionally 
uniform and anisotropic fluid is derived together with the expression for ensemble 
averages. In the case of hard particles without dipolar interactions the free energy 
reduces to that proposed by the Onsager theory for the N-I  phase transition 
[24, 25]. The main body of our calculations concerns dipolar spherocylinders, a 
system that has recently been studied in some detail by Monte Carlo simulations 
[12, 13]. The results are presented in section 3. We have also done some calcula- 
tions allowing for anisotropically distributed attractive forces and Lennard-Jones 
potentials, in order to see how the manifestations of the dipolar part of the interaction 
are influenced by the nature of the non-polar part. The results of these calculations 
are presented in section 4. A discussion of the limitations of the results and of 
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liquid crystals is given in section 5 together with the 

2. The nematic-isotropic transition in the variational cluster approximation 

The variational cluster expansion method has been applied in the past [26 28] 
to study certain simplified models of liquid crystals consisting of orientable particles 
with fixed positions on a regular lattice. The statistical mechanical framework of 
these studies was obtained by a straightforward extension of the work of Strieb et 
al. [20] on Heisenberg ferromagnets. The theory we introduce in this section is 
founded on the same methodology, but is differs from that of [26-28] in that it 
allows for full positional freedom of the molecules in the fluid phase. 

The configurational partition function Z for a system of N rigid molecules in 
thermal equilibrium at temperature T is given by 

Z = d{i} I-I exp [- f lu( i , j ) ] ,  (1) 
(i, j) 

where fl = I/kT, U(i, j) is the interaction potential between a pair of molecules (i, j) 
and {i} represents collectively the configurational degrees of freedom (positional and 
orientational variables) of the N molecules. 

By introducing a variational field q~(i) one can decompose the pair potential as 
follows: 

flU(i, j) = Ho(i, j) + H'(i, j), (2) 

where H o = q~(i) + q~(j) and H'(i, j) = flU(i, j) - ~o(i) - ~o(j). 
One may then rewrite the partition function as 

Z =  Zo( I -  [ exp [ - H ' ( i , j ) ] )  (3) 
\ ( i ,  j) O" 

Here, Z o = (1/N!)z~ is the reference partition function, with 

Zo = id(l) exp [ - ( N  - 1)~o(1)], (4) 

and ( . . . ) o  indicates averaging with respect to the variational interaction Ho(i,j), 
namely 

( . . . ) o  = d{i} (.. .) 1--I Pa(i), (5) 
i=1 

where the single molecule probabilities are given by 

pl(i) = (1/Zo) exp [ -  (N - 1)q~(i)]. (6) 

The free energy F = -(1//3)In (Z) is accordingly written as the sum of two terms, 
F = F o + F'. The reference term F 0 involves only the variational field, 

The term 
F o = ( 1 / f l ) [ l n N ! - N l n  Zo]. 

F'=- (1 / f l ) lnQI - I j ) exp[ -H ' ( i , j ) ] )o ,  

involves both the variational field and the intermolecular potential. 

(7) 

(8) 
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Since Z and F are obviously independent of the variational field, their functional 
derivatives with respect to ~o vanish to all orders. Briefly, the variational cluster 
method consists in approximating F by using a truncated cluster expansion for F'. 
The variational field is then determined by imposing the vanishing of the functional 
derivative of the approximated F with respect to q~. Here we shall restrict our 
consideration to the lowest order approximation, obtained by truncating the cluster 
series after the two-molecule terms. It may be shown [20, 29] that this truncation is 
equivalent to affecting the following approximation: 

ln <(~j)exp [-H'(i,j)J>o ~ ~ ln (exp (9) 

Applying equation (9) to the right-hand side (r.h.s.) of equation (8) we obtain in the 
case of a fluid the following expression for the approximate free energy: 

{ N(N-1)ln<exp[-H'(i'J)]>o} " ( 1 0 )  F (2) = (1/fl) In N! - N In z o 2 

To the same approximation the ensemble average of any quantity X{i} is given by 

<X> ~2) = (X>o + ~ {(X exp [ -  H'(i, j)] >o/<exp [ -  H'(i, j)] >o - (X>o}. (11) 
(i, j) 

Furthermore, the requirement of zero functional derivative 6F~2)/@~ provides the 
following condition for the self consistent determination of the variational field (to 
within a trivial additive constant): 

~o(1)=-ln{zolfd(2)exp[-(N-2)~o(2)-~U(1,2)]}, (12) 

which shows explicitly the dependence of ~o on the intermolecular potential. 
Equations (10)-(12) specify the statistical mechanical framework at the level of 

the two-molecule cluster approximation. We now specialize these equations to the 
treatment of uniform fluids exhibiting uniaxial orientational order and consisting of 
cylindrically symmetric molecules. The potential for a pair of such molecules is a 
function of the intermolecular vector rlj, and of the unit vectors % ej denoting the 
orientations of the symmetry axes of the molecules. Also, in a spatially uniform phase 
the distribution function Pl of equation (6) is purely orientational, i.e., 

Pl (i) = f(e~)/V, (13) 

where V is the volume of the system. It therefore follows that the relevant variational 
field (p(i) depends only on the molecular orientation % 

The connection of the variational field to the intermolecular potential is 
established according to equation (12) through the irreducible cluster integral 

q(01,2) = f{1 - exp I - f l U ( r 1 , 2 ,  e 1, e2)] } dr1, 2. (14) 

This integral, being a function of the relative orientation 01,2 of the two molecules, 
can be expanded in a Legendre series as 

q(01,2) -~ ~ qLPL( cos 01,2)" (15) 
L 

For purely hard body potentials q(01,2) is simply the excluded volume function. In 



Dipoles and nematic phase stability 1093 

general, if the potential U vanishes sufficiently rapidly with increasing intermolecular 
separation (which is the case for the potentials to be considered in this study) q(81, 2) 
is of the order of a volume va spanning a few molecular diameters. If we therefore 
expand the r.h.s, of equation (12) in powers of q ( 8 1 , z ) / V  , all but the linear term will 
be negligible in the limit of macroscopic V and N. Accordingly we obtain 

q9(81) = gI(81)/V, (16) 

where 81 is the angle of molecule 1 relative to the principal axis of the uniaxial phase 
(nematic director) and 4(81) is the average of q(81,2) over the orientations of molecule 
2, namely, 

/ 1  

4(81) = [q(O1,z)f(O2) d cos 82 = ~ qL(PL)PL(COS 81). (17) 
J L 

The order parameters (PL) are defined as 

(PL) = f PL(COS O)f(8) d cos 8. (18) 

and the orientational distribution f(O) is given by 

f(8) = exp [--pgl(8)]/(. (19) 

Here, p = N/V is the particle number density, and ~ is the normalization factor 

= f exp [ - p ~ ( 0 ) ]  d cos 0. (20) 

The combination of equations (18) and (19) constitutes a set of self consistency 
conditions from which the order parameters (PL) are determined given the set of 
coefficients qL. 

In view of equations (16)-(20) (and using In (N!) ~ N In (N) - N) equation (10) 
leads to the following expression for the free energy of a uniaxial fluid in the second 
order cluster approximation 

(~/N)F ~2) = In p - 1 - In ~ - (p/2) ~ qL(PL) 2. (21) 
L 

This expression can be made identical to the familiar Onsager free energy [-24, 25] 
on noting from equations (17), (19), and (20) that ln~ + (p/2)~LqL(PL) 2 is 
equivalent to - S  f(8) In f(O) d cos O-(p/2) ~ f(80f(O2) d cos 81 d cos 82 ~ drl,2{l - 
exp [ - /?U(1,  2)]}. Thus the cluster expansion provides yet another derivation of the 
Onsager result [24] (see also [25, 30]), but in addition it offers a consistent way of 
treating statistical averages with equation (11). 

From the free energy in equation (21) it is straightforward to obtain all the 
thermodynamic quantities of interest to the study of the nematic-isotropic phase 
transition. In particular, the configurational internal energy E, the pressure P, and 
the chemical potential # are given by 

E/(NkT) = (p/2)/3 ~ q~(PL) 2, (22) 
L 

! 
where qz = d/d/3 qL, 

and 

P/(pkT) = 1 + (p/2) ~ qL(PL) 2, (23) 
L 

#/kT=ln  p - I n  ~. (24) 
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The respective expressions for the isotropic phase are obtained by setting (PL) = 0 
for L > 0 in equations (22-24). Accordingly the conditions of equal pressure and 
chemical potential for nematic-isotropic (N-I) phase coexistence yield the equations 

and 
PI/PN = (2/~) exp (--qoP,). (25) 

PN + (1/2)p~ }-" qL(PL) 2 = PI + P~qO/2" 
L 

(26) 

Similarly, the entropy change associated with the N- I  transition at constant density 
p is given by 

ASN_I/(Nk ) = - (p/2)/~ ~, q'L(PL) 2. (27) 
L > 0  

The expressions for the thermodynamic quantities in equations (22-27) as well 
as the self-consistency conditions of equations (18, 19) are formally analogous to 
those derived in the context of the usual mean-field approximation (MFA) [31, 32]. 
The important difference is, however, that in the MFA the coefficients qL are 
essentially treated as input parameters whereas in the cluster approximation they are 
derived from the intermolecular potential, and therefore they bare explicitly the 
dependence on the molecular parameters and the temperature. A further important 
difference concerns the calculation of intermolecular averages where the correlation 
sum of equation (11) vanishes in the MFA. 

3. Nematic ordering of hard dipolar spherocylinders 

In this section we use the free energy in equation (21) to study the nematic 
ordering of hard spherocylinders possessing longitudinal electric dipole moments. 
The latter are assumed to be positioned along the axis of the spherocylinder at a 
distance s from its centre. The molecular model is specified by four quantities, namely 
the diameter D of the spherocylinder, the length L of its cylindrical part, the 
magnitude d of the dipole moment and the dipolar eccentricity x which we define as 
x = 2s/L. The volume of the spherocylinder is denoted by v0. 

The essential geometrical parameter describing the orientability of the sphero- 
cylinder is the aspect ratio LID. It is known from the Onsager theory that the 
accuracy of the approximate free energy in equation (21) rapidly deteriorates for 
small LID, On the other hand, the aspect ratio of common nematogens is not much 
larger than 3. In our calculations we considered aspect ratios from 3 to 7. The results 
we report in this paper are for LID = 5, but they are representative of the qualitative 
trends obtained with other values of LID in the range mentioned earlier. The dipolar 
eccentricity x was varied from 0 (corresponding to centrally positioned dipole 
moments) to 1 (dipoles positioned at the end of the cylindrical part of the 
spherocylinder) in order to study the dependence of the nematic properties on the 
position of the dipole along the molecular axis. 

The intermolecular potential of the dipolar spherocylinders has an infinite steric 
part and a dipole-dipole interaction part. Accordingly the Boltzmann factor 
exp [ - p U ( 1 ,  2)] vanishes when the pair of spherocylinders overlap, and is equal to 
exp [--/3dU~d(1,2)] otherwise. Here, Udd(1,2 ) ---= [ ( e l ' e 2 ) -  3(r.el)(r.ez)]/(r/D) 3 is 
the dimensionless potential describing the interaction of the electric dipoles, and 
~d = ~d2/D3 is a dimensionless parameter which may be regarded either as a reduced 
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inverse temperature (for fixed dipole moment  strength d), or as an effective coupling 
constant for the dipolar interactions. For  polar mesogens of practical interest flu is 
on the Order of one. Most of our results refer to the range 0 ~</~d ~< 2 which is fairly 
typical and illustrates sufficiently the essential trends. It should be pointed out, 
however, that due to the omission of higher order clusters the entire approximation 
grows unreliable for large fig. 

Given the detailed form of the potential we first evaluate the expansion coefficients 
qL of the cluster integral in equation (14). The magnitude of these coefficients rapidly 
decreases with ascending L. The most  significant qL's are plotted as functions of fld 
in figure 1. The magnitude of the odd coefficients qL increases monotonically with 
fld but remains substantially smaller than the magnitude of the next even coefficients 
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Figure 1. Expansion coefficients of equation (15) for dipolar spherocylinders as a function 
of the effective dipole coupling constant fld, and for three different values of the dipolar 
eccentricity parameter: x = 0 for solid curves, x = 0'8 for dashed curves and x = 1 for 
dotted curves. The values of the coefficients are expressed in units of the volume Vo of 
the spherocylinder and refer to L/D = 5. 
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qL+ 1" For example a t  f ld = 2, q3 and q5 are smaller than q6 by one order of magnitude. 
The numerical values of the even coefficients %, q2, and q4 for extremely off-centre 
dipoles (x = 1) do not differ greatly from those for central dipoles (x = 0). It is clear, 
however, from the plots in figure 1 that the trend of variation of these coefficients 
with fld is sensitive to the eccentricity x. As will become evident later, this sensitivity 
of the trends has profound qualitative implications on phase stability. 

The expansion coefficients are then used to evaluate the order parameters (PL) 
from the self-consistency equations (18). The coefficients of rank L > 6 are neglected 
in these calculations. The order parameters are, in turn, used in equations (25, 26) 
to detect phase coexistence. Only two stable phases, isotropic (I) and non-polar 
nematic (N), are consistent with the free energy F (2) of equation (21). Neither a 
vapour-liquid coexistence nor a polar nematic phase is sustained by F ~2) regardless 
of the details of the intermolecular potential. In particular, the lack of a liquid-vapour 
transition is not a peculiarity of the polar spherocylinder model; the conditions of 
equations (25, 26) do not produce coexisting isotropic phases of different densities 
for any value of %, i.e., for any form of the intermolecular potential and any value 
of the coupling constants. This is one of the several limitations associated with the 
neglect of larger cluster contributions to the free energy. 

Returning to the N - I  phase transitions, we present the results for the pressure 
PN-I, the nematic density PN, and the relative density difference (PN -- Pl)/PN at phase 
coexistence as functions of fld and for various dipolar eccentricities in figure 2. Except 
for the case of extreme eccentricity (x = 1), the variation of all three quantities over 
the entire range of fld does not exceed a few per cent, indicating that the dipolar 
interaction has a limited effect on the phase equilbria. All the coexistence curves 
originate from a common value at rid = 0 (where obviously the eccentricity is 
irrelevant), but exhibit different trends depending on x. To appreciate the implications 
of these curves it is useful to think of fld as a measure of the dipole strength at fixed 
temperature. Figure 2 (a) and (b) then indicate that, depending on the eccentricity, 
increasing the magnitude of the dipole moment may raise or lower the coexistence 
pressure PN-I and the density PN relative to their values in the absence of dipolar 
interactions (rio = 0). In particular, a small off-centre dipole is predicted to elevate 
the nematic density threshold (and the coexistence pressure) whereas a large off-centre 
dipole is predicted to lower it. A centrally positioned dipole always lowers the nematic 
density threshold (and coexistence pressure). Although our main concern is with 
relative changes caused by dipole interactions, it should be noted that PN-~ and PN 
at fld = 0 being the coexistence pressure and nematic density of the Onsager theory 
for spherocylinders, are substantially overestimated with respect to values obtained 
from computer simulations [25]. 

In contrast to the athermal behaviour of purely hard body interactions, the 
inclusion of the dipolar component introduces a non-trivial dependence of the phase 
equilibria on the temperature. As a result, phase transitions become possible by 
varying the temperature at constant density. The transitions are first order. The value 
of rid at which the N - I  phase transition occurs for a given density p is determined 
from the condition F ~ ) =  FI 2). The reduced inverse temperature at the transition 
(/~d)N-l is plotted in figure 3 (a) as a function of the density for various eccentricities. 
As expected all the curves originate from the same density value Po at high 
temperatures (rio = 0) where the system becomes athermal. The entropy change 
(AS)N_~ associated with the N- I  transition is plotted in figure 3 (b) as a function of 
(/3d)N_ v Evidently (AS)N_~ increases rapidly with (//d)N-I but is not very sensitive to 
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Figure 2. Nematic-isotropic coexistence of dipolar spherocylinders with L/D = 5. Plots of 
the coexistence pressure PN_I (in units of kT), Of the density of the nematic phase at 
coexistence Pu (expressed as packing fraction in terms of the spherocylinder volume Vo) 
and of the relative density difference at coexistence (PN-PI)/PN as a function//d for various 
values of the eccentricity parameter x. 

the eccentricity. Finally, the value of the principal order parameter (Pz) at the 
N - I  transition varies very little with (/~a)N-~ and x ((P2)N-I = 0"831 ___ 0.001 for 
0 ~< (/?d)N-1 ~< 2 and 0 ~< x ~< 1). 

The essential implication of the phase diagrams in figure 3 (a) is that the tempera- 
ture of the N - I  transition is strongly affected by the eccentricity x. It is clear that at 
densities p < Po the N - I  transition temperature for central dipoles is much higher 
than for off-centre dipoles of the same magnitude. A notable feature is that for large 
eccentricity (/?d)N-I becomes a double valued function of p in the density region p > Po. 
This allows for the re-entrance sequence N - I - N  by increasing the temperature at 
constant density. As implied by the example on the x -- 0"8 phase diagram of figure 
3 (a), off-centre dipoles can stabilize the isotropic phase (over a bounded temperature 
range/~_ </ /d  </3+)  at densities p > Po that are well within the nematic regime of 
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Figure 3. Nematic-isotropic phase transition at constant density for dipolar spherocylinders 
with L/D = 5 and various dipolar eccentricity parameters x. (a) Plot of the reduced 
inverse temperature (~a)N-I of the transition as a function of the density p (expressed in 
units of the spherocylinder volume vo). (b) Entropy change ASN_I at the transition as a 
function of (~d)N-V The solid curve corresponds to eccentricity x = 0, the dashed to 
x = .0"8 and the dotted to x = 1. 

central dipoles (compare with the x = 0 phase diagram). A similar N - I - N  re-entrance 
sequence was recently predicted [33] for hydrogen-bonding hard spherocylinders. 

Our  calculations revealed that certain physical properties of the nematic phase 
are more sensitive to the dipolar eccentricity than others. For  example the compressi- 
bility (P/pkT) shows a variation of no more than 5 ~  over the entire range of x (and 
/~d) for densities in the nematic as well as in the isotropic regions. Further examples 
are illustrated in figure 4 where the/~d dependence (at constant density pro = 0"8385) 
of the order parameter  (P2), the configurational energy E and the dipole correlation 
factors (Kirkwood g factors) [32, 34] are plotted for central (x = 0) and off-centre 
(x = 0.8) dipoles. 

As the plots of figure 4 (a) indicate, the two nematic phases produced by the 
molecules with x = 0.8 and the nematic phase of the molecules with x = 0 do not 
differ very much in their numerical values of (P2). However, the high-temperature 
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Figure 4. Plots of the order parameter (P2>, the internal configurational energy E per 
molecule (expressed in units of kT), and Kirkwood dipole correlation factors gz, gx 
(parallel and perpendicular to the nematic director) as a function of fla for dipolar 
spherocylinders at packing fraction pro = 0.8385. The dotted curves correspond to 
central dipoles, and the solid curves correspond to eccentricity x = 0.8. 

nematic phase of the x = 0.8 system exhibits an anomalous variation of the order 
parameter with rid, i.e., a decrease of the ordering with decreasing temperature. The 
normal trend is restored in the low-temperature nematic phase. A relatively high 
value (about 60~o of (P2>) is predicted for the order parameter (P4>. Its variation 
with fld follows that of (P2> for both cases of eccentricity. 

The plots of figure 4 (b) show that the internal configurational energy E, calculated 
from equation (22), varies considerably with x at large fla. For  hard dipolar bodies, 
E is simply the average energy of the dipole-dipole interaction. Accordingly figure 
4 (b) indicates that small dipoles increase the average dipolar energy of the system, 
irrespective of their position along the molecular axis, and that off-centre dipoles 
lead to lower dipolar energy than central ones in the nematic phase. 



1100 A.G.  Vanakaras and D. J. Photinos 

The Kirkwood 9 factors are given by 

92 -- 1 + (N - 1)((e 1 "z)(e2.z))/((el .z)2). (28) 

and similarly for 9x, where the intermolecular averages are evaluated according to 
equation (11), and the z axis is identified with the nematic director. The plots of the 
9 factors in figure 4 (c) show that there is strong antiparallel (0 < 1) association of 
the molecular dipoles. Furthermore, there is very little difference between x = 0 and 
x = 0'8, indicating that the position of the dipole moment along the molecular axis 
has minor effects on molecular association in the nematic phase. It is obvious from 
the negative values of Oz at large/~d that the use of equation (11) leads to a gross 
overestimate of orientational correlations along the nematic director. This fact has 
been pointed out in [-13] where the O factors, together with other relevant quantities 
have been evaluated by Monte Carlo (MC) simulation for central dipoles, and for 
selected densities and dipole moment strength. The MC value for 0z is, of course, 
positive and substantially smaller than 1. The values of the transverse factor 9x are 
in reasonable quantitative agreement with the MC results. Extensive quantitative 
comparisons of our results (for x = 0) with the MC results [13] can not be made 
because of the large difference in the predicted nematic density threshold. A 
comparison restricted to the density pvo -- 0"356 and flu = 6"0, where both calcula- 
tions predict an isotropic phase, shows that the dipolar energy is overestimated 
with respect to the MC results by roughly a factor of 2, and similarly for the 
compressibility. The value of the isotropic 9 factor (0"30) is appreciably smaller than 
the MC value (0.41). Finally, a noticeable qualitative difference is in the distribution 
function f(O) which according to our results has its maximum at 0 = 0, whereas the 
MC results suggest an unusual behaviour at small angles with the maximum shifted 
t o 0 ~ 7  ~ 

4. The inclusion of attractions and soft repulsions 

The athermal structure of the phase diagrams in figures 2 (b) and 3 (a) near fl~ = 0 
reflects the use of hard body potentials to represent the non-polar part of the 
intermolecnlar interaction. It is therefore meaningful to ask how these diagrams 
would be affected if the restriction to purely hard body potential were relaxed. To 
address this question we have included attractions and soft repulsions in our 
calculations simply by introducing along the molecular axis a number ns of evenly 
spaced identical interaction centres. The potential between an intermolecular pair of 
centres is taken to be isotropic. The total interaction potential for a pair of molecules 
is anisotropic by virtue of the linear arrangement of the interaction centres on each 
of the molecules. This is obviously just one of the many ways to depart from the 
hard spherocylinder potential, but it adequately represents the general implications 
of the inclusion of soft components in the non-polar part of the intermolecular 
potential. In the remaining of this section we present the diagrams of constant density 
phase transitions for two specific models of multicentre potentials. 

4.1. Hard spherocylinders with distributed attraction centres 

In this model the hard spherocylinder carries, in addition to the dipole moment, 
nine (n S = 9) centres of intermolecular attraction symmetrically positioned along its 
axis with uniform spacing L/(n  s - 1). The potential of an intermolecular pair of 
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Figure 5. Constant density nematic-isotropic phase transition of dipolar spherocylinders 
(L/D = 5) with attractive interactions as in equation (29) with n s = 9. Relative strength 
of attractions: P./Ba = 0'8 for solid curves and 2-4 for dotted curves. 

attraction centres is taken to vary as the inverse sixth power of their distance rcc,. 
Accordingly the total attractive potential for a pair of molecules is parameterized as 
follows: 

Ua/kr=-- f la /n  2 ~ (D/Fee,) 6. (29) 
(c,c') 

where the summat ion  extends over all combinations of intermolecular pairs of centres, 
and fla measures the effective strength of the attractive interaction. 

The results of the calculation for the phase transition at constant density using 
the above interaction are plotted in figure 5. They were obtained for two values of 
the ratio ]3Jfl d of attractive to dipolar interactions namely /~a/]~d = 0"8 and 2.4. 
Inspection of these plots and comparison with figure 3 (a), shows that the main effect 
of attractions is a more rapid reduction of the density of the N - I  transition with 
increasing rid" We note that as a result of this reduction rid for x = 0"8 becomes single 
valued in the curve with flJfld = 2.4. In this case, the attractions are strong enough 
to completely mask the tendency of off-centre dipoles to produce nematic phase 
re-entrance. At high temperatures the interactions are dominated by the hard- 
spherocylinder repulsions, and therefore the athermal behaviour of the system forces 
all the curves to originate from a common value of the density at fld = 0~ 

4.2. Linear arrays of Lennard-dones interaction centres 

In this model we introduce soft repulsions as well as attractions by replacing the 
spherocylinder with a linear collection of evenly spaced Lennard-Jones (L-J) 
interaction centres. The molecular length L is represented by the distance between 
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Figure 6. Constant density nematic-isotropic phase transition of L-J arrays with nine 
interaction centres, LID = 5, and a dipole moment along the axis of the array for various 
combinations of the relative strength fld/flL-J of dipolar to L-J interactions, and of the 
dipolar eccentricity parameter x. 

the first and the last interaction centre of the array. The effective molecular diameter 
D corresponds to the distance at which the L-J potential vanishes. The total L-J 
interaction for a pair of molecules is parameterized as follows: 

UL_j/kT = (flL_j/n 2) ~ [(D/r~,) 12 -- (D/r~,)6]. 
(c, c') 

(30) 

The results of calculations for phase transitions at constant density using the 
above model potential with n s = 9 and L I D  = 5 are shown in figure 6. They 
correspond to two values of the ratio ]?d//~L_j that measures the strength of the dipolar 
interaction relative to the L-J potential. The obvious difference from the respective 
phase diagrams of figures 3 (a) and 5 is that now the high temperature phase is always 
the isotropic one. The inverse temperature (]~d)N-~ at the transition is a single valued 
function of the density for any value of the eccentricity. Accordingly, the high 
temperature re-entrant nematic phase for off-centre dipoles is not obtained in this 
case. At sufficiently large ]?d the shape of the phase diagrams and their trend of 
variation with x are similar to those obtained in figures 3(a) and 5 for the 
spherocylinders. 

5. Summary and discussion 

We have used the variational cluster expansion method to investigate the effect 
of electric dipole interactions on the nematic ordering of uniaxial rod like molecules. 
The free energy was formulated in terms of two-molecule cluster contributions, 
yielding the lowest order approximation that contains the intermolecular potential 
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explicitly. Three alternative molecular models were considered for the non-polar part 
of the intermolecular interaction, namely, hard spherocylinders with and without 
attractions, and rigid Lennard-Jones arrays. The electric dipoles were positioned 
along the molecular axis of cylindrical symmetry at various distances from the 
molecular centre. 

The results show that the thermodynamically stable nematic phase is non-polar 
(in the absence of external fields) and that the conditions of its coexistence with the 
isotropic phase are, in general, influenced weakly by the dipolar interactions. Perhaps 
the most interesting feature of the results is the dependence of the stability of the 
nematic phase on the position of the dipole along the molecular axis. The dipolar 
eccentricity is predicted to affect substantially the nematic-isotropic transition 
temperature and the average dipole-dipole interaction energy, but to have marginal 
effects on the order parameter (P2), on the compressibility, and on the Kirkwood 9 
factors. An important qualitative difference between central and off-centre dipoles is 
that the latter can give rise to nematic phase re-entrance. The conditions for 
re-entrance are, however, not determined exclusively by the strength and the position 
of the dipole; they are to some extent dependent on the non-polar part of the 
intermolecular interaction in the sense that soft repulsions and strong attractions are 
shown to inhibit re-entrance. 

In spite of the severe approximations employed in the calculations, the results 
are in qualitative agreement with available Monte Carlo simulation results on 
spherocylinders with central dipoles. The essential features obtained from these 
simulations [13] for the role of dipole moments (slight effects on the order parameter 
(P2) and the pressure, promotion of substantial antiparallel molecular association) 
also emerge from the present calculations. In addition, some of the subtleties of 
dipolar effects are revealed and a mechanism of phase re-entrance emerges naturally. 
Nevertheless, the theory, in the form presented here, is too simple to warrant a 
quantitative comparison with experimental results on real or simulated liquid crystals, 
or even to account qualitatively for the multitude of phases that can be formed by 
elongated polar molecules. This is primarily due to the following two limitations: 

(a) The chosen form of the variational field corresponds to spatially uniform 
phases and therefore allows only for isotropic and nematic ordering. Thus, for 
example, the destabilization of the nematic phase with decreasing tempera- 
ture, observed for off-centre dipoles, is necessarily manifested as a transition 
to the isotropic phase simply because no other phase is available. Clearly a 
thorough study of the phase diagram requires the extension of the variational 
field to allow for a wider variety of phases, in particular for smectics which, as 
suggested by computer simulations [12], are the favoured mode of ordering 
for rods with off centre dipoles. 

(b) In fluids, the restriction to second order clusters is equivalent to retaining 
up to linear terms in a density expansion (see equation (21)) and there- 
fore constitutes a major source of inaccuracy at liquid crystal densities 
[25, 30, 35, 36]. The third and fourth order clusters have been shown to bring 
about substantial improvement in the description of orientable molecules on 
a lattice [27]. Work in progress indicates that, for fluids, the inclusion of third 
order clusters (which is not equivalent [29] to the third order viral extensions 
[30, 35, 36] of the Onsager theory), improves considerably the agreement 
with MC results, albeit at a considerable computational cost. 
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