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THEORY OF BIAXIAL NEMATIC ORDERING M ROD-DISC MIXTURES 
REVISITED 

A. G. VANAKARAS and D. J. PHOTINOS 
Department of Physics, University of Patras, Patras 261 10, Greece. 

Abstract We use the variational cluster approximation to study the relative 
thermodynamic stability of the spatially uniform phases of binary mixtures of hard rods 
and discs. The factors promoting the stability of the biaxial nematic phase are iden.tified 
and discussed. The results suggest that a stable thermotropic nematic biaxial mixture 
cannot be obtained from molecules of the sizes and eleclric dipole interaction strengths 
commonly encountered in real calamitic and discotic thermotropic phases. 

NTRODUCTION 

The theoretical possibility of obtaining a nematic biaxial phase by mixing prolate and 
oblate mesogens was first demonstrated by Alben' many years ago. The mechanism 
giving rise to the biaxial ordering in such mixtures is rather simple: over a certain range of 
compositions there is combined preferential alignment of the prolate molecules along a 
"calamitic director" and of the oblate molecules along a perpendicular "discotic director". 
This possibility was subsequently investigated and confirmed by different theoretical 
 method^^-^. However, no thermotropic biaxial mixture has been identified experimentally 
to date. According to the results of computer simulations6 and of mean-field calculations7, 
the difficulty in producing such a biaxial mixture is due to its instability with respect to 
decomposition into two uniaxial nematic phases (one of which is rich in rods and the other 
is rich in discs). It was later pointed out that the biaxial mixture may be stabilised if the 
interaction between the rod-like and disc-like molecules are made sufficiently strong*.9. 
Thus, on a more practical level, the following question is posed: can the intermolecular 
interactions of actual thermotropic mesogens (prolate and oblate) be assessed as to their 
role in promoting or suppressing the formation of biaxial mixtures? Stated differently, is it 
reasonable to expect that by molecular structure optimization it would be possible to 
stabilize a biaxial nematic mixture against decomposition? In the present work we attempt 
to answer this question for mesogens exhibiting steric repulsion as the dominant 
anisotropic interaction. The effects of the flexibility of the pendant chains and the effects 
of electric dipole-dipole interactions are considered as well. Accordingly, the results are 
applicable to a wide range of common thermotropic liquid crystals. 

THEORY 

The objective of our calculations is to construct the diagram of all the spatially uniform 
fluid phases of a rod-disc system with specified intermolecular interaction. To this end we 
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formulate the free energy according to the variational cluster expansion method and obtain 
an approximate expression by retaining only the two-molecule cluster terms. Details on the 
implementation of this method in the case of single component phases can be found in 
reflo. The generalization to multicomponent phases is straightforward. The relevant 
expressions for the orientational distribution and for the free energy in the case of a binary 
mixture of axially symmetric rod-like and disc-like molecules are as follows. 

With the indices r (for rods) and d (for discs) denoting the two components, we have 
for the orientational distribution of a rod molecule 

r 

Here o describes the orientation of the symmetry axis of the rod molecule relative to 
the space-fixed (macroscopic) frame, p=N/V is the molecular number density, x, and 
xd(=l- xr) are the molecular fractions of rods and discs, Y; are the spherical harmonics, 

<...>r(d) denotes averaging with respect to the orientational distribution of the rods (discs) 
and cr is the normalization factor of the distribution. The expression for the distribution 
function of a disc molecule is obtained from eq(1) simply by replacing everywhere the 
index r with d and conversely. The tensor coefficients q i  are determined from the 

intermolecular potential Uij(t1,2,01,02) through the Legendre polynomial expansion of the 
irreducible cluster integral according to the relation: 

where the index i stands for either r or d and similarly for the index j. Here, 01,~ denotes 
the relative orientation of molecules 1 (of type i) and 2 (of type j) and the respective 
intermolecular vector is denoted by t 
The Helmholtz free energy is given by the expression: 

where 

and the superscript in F is to indicate that contributions 
clusters have been ignored in the right hand of eq(3). To 
the expression for the pressure P of the mixture reads: 

and the chemical potential of component i is given by 

Bpi = l n p + i n x i  -In& , 

from higher than two-molecule 
within the same approximation, 
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from which the Gibbs free energy of the mixture may be directly obtained as 

Given the intermolecular potentials Ui&r ,,2,0 1 ,q), the procedure for determining 
the phase diagram is initiated by determining the tensor coeficients q i  from eq(2). The 

order parameters (Yi  ) are then determined self-consistently using the orientational 

distribution in eq( 1) at fixed molecular fractions of the rods and discs. There are in general 
four types of solutions to the self consistency equations. All the solutions describe non- 
polar fluids, i.e. ( Y i )  =O for odd L or m, and correspond to one of the following phases: 

(a) The isotropic (I) phase. Here (Y,")r(d) = 0 for L>O. 

(b) The uniaxial nematic phase (Nr) in which the rods are preferentially aligned along the 
macroscopic Z axis. Here Y ,  = 0, except when m=O and Yo > 0 Yo 

(c) The uniaxial nematic phase (Nd) in which the discs are preferentially aligned along the 
macroscopic Z axis. Here Y, 

(d) The biaxial nematic phase (N& in which both, the discs and the rods, are aligned 
along mutually perpendicular directions. Here (Yi)r(d) f 0. 

The relative stability of each of these phases at given pressure is determined by comparing 
the corresponding Gibbs free energies. 

( L)r(d) ( ')r ' ( ')d <'. 

= 0 except when m =  0, and (Yi)r < 0, (Yo'), > 0. ( L)r(d) 

Stroobants and Lekkerkerkef' have studied the phase diagram of a mixture consisting of 
very long rods and very thin discs (a condition that could be realized in some lyotropic 
systems) and have found that a stable biaxial nematic phase can be obtained over the 
pressure-molecular fraction range shown in fig( 1 a). The nematic-isotropic phase 
transitions are, as usual, of first order and the transition from either of the uniaxial nematic 
phases to the biaxial one is of second order. In terms of the tensor coefficient of eq (2), 
this system corresponds to q!, /q! = q;,/q! =1, qdd/qrr =1, q r d / q i  = -2 and qrd =O 
for L>2. 

By changing just the value of the ratio q:d/qi to -1 one obtains the system studied 

by Pale-Mohoray et al?, which, as shown on the phase diagram of fig(lb), does not 
allow for a stable biaxial phase. It has instead a coexistence region of the two uniaxial 
phases Nr and Nd. The reason is readily seen on the diagram of fig(1b'): the biaxial phase 
corresponds to a local minimum of the Gibbs free energy around xr=0.5 but the 
decomposition into two nematic phases yields a globally lower value of G. 

2 2  2 L 
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FIGURE 1 Pressure-composition phase diagrams (a, b, c) and Gibbs free energy plots at 
fixed pressure (a', b', c') for rod-disc mixtures with tensor coefficients 
q:d/q: = ql)d /q:=qL / q i  =1 and neglecting coefficients for L>O. The figures 
differ in the values of the ratio q:, /q: which is set at -2 in (a) and 
(a'), at -1 in (b) and (b') and at -1.48 in (c ) and (c'). The dotted lines in (a), 
(b), (c ) indicate the boundaries of the region where the self consistency 
equations yield biaxial solutions, 
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BIAXIAL NEMATIC ORDERING IN ROD-DISC MIXTURES 69 

By contrasting these two examples it becomes apparent that the stability of the biaxial 
nematic phase is rather sensitive to the strength of the rod-disc interactions relative to the 
rod-rod and disc-disc interactions. This is further illustrated in fig( lc) which shows the 
phase diagram for the case of an intermediate value of the ratio q:d/q’, = -1.48. A stable 
biaxial phase is obtained at not too high pressures. As the absolute value of q:d/qf, is 

reduced, the upper pressure boundary of the biaxial phase moves to lower pressures until 
the biaxial region disappears completely from the phase diagram for qfd/qf, > -1.4. 

In the three cases of the phase diagrams in fig( 1) the tensor coefficients q l  and q i  are 

specified ad hoc. The variational cluster approach, however, makes it possible to determine 
these coefficients according to eq(2) for any given form of the intermolecular interaction. 
To construct phase diagrams that are more relevant to actual disc-rod mesogenic systems 
we have carried out such calculations for the following cases of binary mixtures. 

Hard soherocvlinders and cut-soheres. 
These provide a crude approximation to mesogenic systems in which all other interactions 
are negligible compared to the steric repulsions. The determination of the tensor 
coefficients q i  from eq(2) involves the evaluation of !he excluded volumes for pairs of 
spherocylinders (of diameter D, and length L, for the cylindrical part) and/or cut-spheres 
(of diameter Dd and thickness Ld). The values of the leading coefficients are listed in Table 
I for a choice of relative geometrical parameter of the rods and discs that corresponds to 
sizes and aspect ratios of typical prolate and oblate thermotropic mesogens. It is apparent 
from this table that (i) the fourth and sixth rank coefficients are not negligible, (ii) the 
coefficients q:, and q:d are of opposite signs and therefore have opposite effects on the 
stability of NBX, (iii) the coefficients q:d, and qTd, being of the same magnitude as the 
respective qk or q k  , are not strong enough to suppress the decomposition of NBX into 
two uniaxial mixtures. The phase diagram for this case is shown in fig(2). The biaxial 
mixture obtained from the solution of the self consistency conditions (keeping tensor 
coefficients up to 6th rank) is always unstable against decomposition into N, and Nd. 

Dioolar hard suherocvlinders and cut-spheres. 
To assess the effect of electric dipole interactions on the stability of the biaxial mixture we 
have repeated the calculations for spherocylinders and cut spheres which, in addition to 
their hard body interactions, exhibit dipolar interactions. These are taken to originate from 
dipole moments of strengths and pd which are positioned at the centres and directed 
along the symmetry axes of the spherocylinders and the cut spheres. The corresponding 
tensor expansion coefficients calculated from eq(2) are shown in table I in parentheses. 
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22. 

5 ’  
5 

20 - 

TABLE I Tensor expansion (in units of D: ) coefficients for a mixture of sperocylinders 
and cut-spheres of aspect ratios L,fDr=5 and Ld/Dd=0.2 respectively and 
Dd/Dr=3.5. The values in parentheses are for the case where the same molecules 
cany axial dipole moments of strength p,’/ltTDT = 3 and p:/kTD: = 2 . 

P/kT=20 
. .  . .  . .  ,. *:, . . .  . . .  . . . .  ”‘ . :: :: ... . . . . .  I . , ._ . . .  -..: .. ..... ..;;. ......... ........... 

N. 

.......... ........ e.x . 

.~.. 

1 

disc-disc rod-rod rod-disc 
93.0 (92.3) 74.9 ( 73.1) 85.6 (84.4) 

-18.6 (-20.5) -24.7 (-26.2) 28.0 (29.4) 

0 
9 ij 

2 
9 ij 

4 
9 ij 

6 
4 ii 

-10.4 (-12.6) -5.5 (-6.0) -1 1.3 (-12.6) 

-2.0 (-4.4) -2.5 (-2.8) 4.5 ( 5.7) 

Although these results are obtained for rather strong dipole moments (5-1ODebye), the 
differences from the dipole-free tensor coefficients are marginal as far as the stabilization 
of the biaxial mixture is concerned. The respective phase diagram has only minor 
quantitative differences from the dipole-free diagram of fig(2a). The failure of the dipolar 
interactions to prevent decomposition is not surprising since these interactions cannot be 
restricted to rod-disc pairs (as it would be desirable for the prevention of phase decompo- 
sition). Other arrangements of the dipole moments were also considered, such as off-centre 
dipoles and radially directed dipoles. None of these arrangements leads to a substantial 
improvement of biaxial phase stability for any realistic dipole moment strengths. 

0.0 0.5 1 .o 
X 

r 
X 

FIGURE 2 Pressure-composition phase diagram (a) and Gibbs free energy plots at 
fixed pressure (a’) for a system of hard spherocylinders and cut spheres with 

L,./Dr=5, Ld/Dd=0.2 and Dd/D,=3.5. 

DISCUSSION AND CONCLUSIONS 

The results obtained in the previous section suggest that a stable biaxial nematic mixture of 
prolate and oblate mesogens cannot be obtained for any molecular size, aspect ratio and 
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molecular dipole interaction that could reasonably be identified with the molecular 
structures of thermotropic nematogens. The results are of course approximate since they 
are based on a free energy in which higher than two-molecule clusters are ignored. 
Furthermore, they refer to rigid molecules and thus the effects of the flexible pendant 
chains, which are generally known to be important to the formation of mesophases, are 
not accounted for. The inclusion of flexible pendant chains would complicate the 
calculations enormously. However it can be argued that the resulting molecular flexibility 
would not improve the stability of the biaxial phase and, in fact, there are reasons to 
believe that it might constitute a further source of instability as a result of frustration 
effects in the ordering of the (radially attached) pendant chains of discotic molecules1i. 
Such effects render the biaxial mixture (which exhibit more extensive frustration due to the 
high concentrations of both the rods and the discs) even more unstable towards 
decomposition into rod-rich and disc-rich nematics (in both of which the extent of 
frustration is smaller). 

To promote the stability of the biaxial mixture it is necessary to enhance the rod-disc 
interaction relative to the rod-rod and disc-disc interactions but without substantially 
weakening the anisotropic part of either of the latter interactions, since then the nematic 
ordering may be lost altogether. Steric and electrostatic interactions (dipole or quadrupole) 
are not suitable for this purpose since they cannot be restricted to just the rod-disc pairs. 
Hydrogen bonding, on the other hand can provide such selective pair interactions and is 
therefore a possibility worth investigating in connection with the stabilization of biaxial 
mixtures of rods and discs. Such interactions, however, being pairwise saturated, entail 
certain essential modifications to the derivation of the free energy functional on which the 
present calculations were based. 

This work was supported by EC under Human Capital and Mobility Program 
contract ERBCHRXCT930161. 
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