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We study the effect of molecular dipole strength on the polymorphism of smectic A liquid crystals using
computer simulations and density functional theory. We find, for a system of polar Gay–Berne particles with an

off-centre axial dipole, a change in molecular organisation from non-interdigitated to interdigitated (SAd
)

structure.

1 Introduction

In a simple classification of liquid crystals, nematics have long-
range orientational order, while smectic phases also have
additional translational order corresponding to a layered
molecular organisation. The variety of smectics is, however,
very wide1,2 and comprises a number of phases of increasing
complexity, from the most intuitive instance of molecules
perpendicular to each layer and positionally disordered (SA),
to the case of molecules that are tilted and=or have some
degree of positional order inside the layers (SC , SB , etc.).1–4

An additional and perhaps more surprising polymorphism is
that found in smectic A phases formed by strongly polar
molecules, in particular rod-like mesogens with a permanent
dipole near one end of the molecule and a single chain at the
other end.2,4–8 In this case the layer spacing as measured by X-
rays varies between one (SA1

) and two (SA2
) full molecular

lengths, with intermediate values in interdigitated SAd
phases,

while the dipoles themselves can arrange in different ways.
Thus a double layer with antiferroelectric order of dipoles is
found in SA2

,3,6 a striped dipolar domain structure in SÃ ,3,9

while a compensation of the dipoles seems to be associated
with the interdigitated structure.3

Another indication of the delicate balance of interactions in
these smectics is the observation, in some cases, of re-entrant
nematic phases on further cooling down an already formed
smectic.5

Disentangling the effect of different molecular interactions
such as steric repulsion, dispersive attraction and dipolar for-
ces (not to mention conformational and chain-length-related
effects) in real mesogens is not easy, given the complex nature
of the molecules of interest or of their mixtures, and there is a
need for simple model systems that could help in under-
standing the role of the various contributions.

On an intuitive basis, it would seem reasonable that the
position and strength of the mesogen dipole moment is
important in this respect. However, this is not so obvious and
not so easy to demonstrate, and there is at least one case10

where, in a computer simulation of a system of hard polar
spherocylinders, only a single monolayer SA phase was
obtained irrespective of the location and strength of the axial
dipole. A number of other simulations of polar hard parti-
cles10,11 and Gay–Berne (GB) systems12–15 have appeared.

Central12,13 and terminal12,14 axial dipoles of different strength
have been studied. The dipoles are generally seen to influence
the nematic–smectic more than the nematic–isotropic transi-
tion. Without reviewing all the different findings, we just
mention that SA and SB phases have been observed, but not the
variety of experimentally observed smectic phases.

In this paper we wish to investigate the extent to which the
polymorphism is affected by the strength of a longitudinal
dipole placed at a suitable non-central position along the
molecular axis. To do this we choose to simulate a system of
ellipsoidal particles with length to width ratio 3:1 interacting
via an attractive–repulsive Gay–Berne (GB) potential with an
added longitudinal point dipole as detailed later on in
Section 2.

We shall present both extensive Monte Carlo (MC) simu-
lations (Section 3) and a theoretical analysis (Section 4), and
we discuss our findings in Section 5.

2 Model and computer simulations

We consider a system of elongated uniaxial ellipsoidal particles
of length se and breadth ss with an embedded axial point
dipole at a selected off-centre position on the axis, and we
study the influence of the strength of this molecular dipole on
the overall mesophase structure.

The dimensionless pair potential U�(i,j)¼U(i,j)=es that we
adopt is the sum of a Gay–Berne16,17 and a dipole–dipole term:

U �ði; jÞ ¼ UGB�ði; jÞ þUd�ði; jÞ; ð1Þ

where the Gay–Berne part contains the anisotropic attractive–
repulsive contribution between the two particles with orien-
tation vectors ûi , ûj and center–centre separation rij¼rijr̂ij , and
where es is the energy unit. Molecular orientations are defined
with respect to the principal axes of particles i, j, namely ûi�ẑi
and ûj�ẑj (we use a ‘ cap ’ to indicate a unit vector):

UGB�ði; jÞ ¼ 4e r̂ij; ûi; ûj
� � ss

rij � s r̂ij; ûi; ûj
� �

þ ss

" #12
8<
:

� ss

rij � s r̂ij; ûi; ûj
� �

þ ss

" #6
9=
;: ð2Þ
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Here e(r̂ij , ûi , ûj) and s(r̂ij , ûi , ûj) are the strength of interaction
and contact distance whose explicit form is given else-
where.16,17 We employ shape anisotropy se=ss¼3, a ratio of
side-to-side to end-to-end interaction es=ee¼5, and GB expo-
nential coefficients m¼1, n¼3, corresponding to the parametri-
sation introduced elsewhere.17 The cutoff radius adopted is
Rc

GB¼4.0ss . In the absence of dipoles this GB model, at den-
sity r��N=V �¼ss

3N=V¼0.3, has a transition from isotropic to
nematic phase at a scaled temperature (T �¼kBT=es) TNI

��3.55
and then becomes smectic at TNS

��2.4.
The dipolar energy is given by the standard electrostatic

expression:

Ud�ði; jÞ ¼
m�i m

�
j

r�3d
ẑi 	 ẑj � 3 ẑi 	 r̂dð Þ ẑj 	 r̂d

� �� �
; ð3Þ

where rd�rdr̂d is the vector joining the two point dipoles at dis-
tance rd¼ssrd

�. We consider an embedded electric point dipole
oriented along the molecular axis, located at an intermediate
distance between centre and end (d�¼d=ss¼0.65) and dipole
moments li

��m�ẑi , lj
��m�ẑj , where m��(m2=esss

3)1=2 is the di-
mensionless moment. This choice of dipole location ensures
that a frustration is built into the system, as GB and dipolar
interactions cannot be simultaneously optimised by a standard
smectic layering. This in turn might be of use in trying to
change the molecular organisation by changing the relative
contribution of the dipolar term. The dipolar interaction has
been computed using the reaction field (RF) method18 with
cutoff radius Rc

RF¼6.0ss and dielectric constant of the sur-
rounding medium eRF¼1.5, as in ref. 19. Various groups19–21

have shown that the RF approach is sufficiently accurate for
liquid-crystal systems of the size as large as ours. As a further
check we have also performed simulations with the Ewald
summation method (a¼4.8, kmax¼2, tin-foil boundary condi-
tions12) for the case m�¼2.0, finding the same values for dipolar
energies and order parameters as obtained from the RF simu-
lations.

In the theoretical calculations the intermolecular potential is
simplified by replacing the repulsive part of the Gay–Berne
potential with a hard-body repulsive term when the molecules
approach each other closer than the contact distance s(r̂ij , ûi ,
ûj). With this approximation, the intermolecular potential can
be written as

U �ði; jÞ ¼ Uhard�ði; jÞ þU soft�ði; jÞ; ð4Þ

where Uhard� corresponds to the hard Gaussian overlap
(HGO) model

Uhard�ði; jÞ ¼ 1 if rij < s r̂ij; ûi; ûj
� �

;

0 if rij 5s r̂ij; ûi; ûj
� �

;



ð5Þ

and the second term Usoft� collects the residual interactions,
namely the remaining ‘ soft ’ repulsion and attraction of the
Gay–Berne part as well the dipolar interactions,

U soft�ði; jÞ ¼ 0 if rij < s r̂ij; ûi; ûj
� �

;

UGB�ði; jÞ þUd�ði; jÞ if rij 5s r̂ij; ûi; ûj
� �

:



ð6Þ

Our MC sample consisted ofN¼1000 interacting particles as
described in the present section at a dimensionless density
r�¼0.3 and we have investigated several temperatures T �

corresponding to nematic and smectic phases for the apolar
systems. We have used canonical (constant volume and tem-
perature,NVT ) conditions as in ref. 17 and with cubic periodic
boundary conditions.

The simulations were typically run in a cooling sequence
with equilibration runs of �200 kcycles and production runs of
100–300 kcycles. Observables for averaging and data analysis
were accumulated during production runs sampling one con-
figuration each 20. The MC evolution of configurations takes
place via positional and orientational moves17 with the

addition of attempted dipole flips to prevent locking in meta-
stable states,12 a flip mov1e being a rotation of 180 degrees
around the particle x axis. The flip moves were randomly
attempted with a 20% frequency compared to the 80% of the
conventional translational–orientational moves.

3 Results from simulations

We plot in Fig. 1 our results for the average values of the
dimensionless Gay–Berne energy per particle hUGB�i, the
dipolar energy hUd�i and the second-rank orientational order
parameter hP2i, at different temperatures for the three dipole
strengths.

The orientational order parameter hP2i¼h[3(û	ê )2�1]=2i was
calculated as in, ref. 17 obtaining at each selected configura-
tion the director ê from diagonalisation of the ordering
matrix.22–24 Similarly, hP1i¼hû	êi was routinely calculated, but
was always found to be zero within error, and thus it is not
reported here.

All the systems studied present a nematic–isotropic (NI) and
a nematic–smectic (NS) transition in the temperature range
studied. The order parameter increases regularly with
decreasing temperature, with no sign of re-entrance in all the
cases studied.

We notice that switching on and increasing the strength of
the dipole has a greater effect on the nematic–smectic transi-
tion, which is shifted to lower temperature. The temperature
shift is, however, not monotonic with respect to dipolar
strength, as we can see from Fig. 1. The nematic–isotropic
transition is not affected much by the dipole, as was also found
for the case of a central axial dipole for a GB system with a
different parametrisation,13 while a significant shift to higher
temperatures was instead found for the nematic–isotropic
transition in strongly polar GB particles with a terminal dipole
(from TNI

�¼2.2 to TNI
�¼3 on going from m�¼0 to m�¼2,

ref. 14).
In this work we have concentrated on the smectic phases and

on the types of polar organisation obtained. The limit between
low-temperature smectic and solid phases is always difficult to
assign; and here, to confirm the smectic, fluid, nature of the
phases, we have calculated the mean-square displacements li in
the different directions. These are definitely non-negligible even
at the lowest temperature studied, where they are not lower
than 0.1ss , to be compared with typical values of �0.3ss in the
isotropic phase.

Inspection of the snapshots (Fig. 2) allows some interesting
observations to be made concerning the molecular arrange-
ment. The lowest dipole m�¼1 system is characterised by
monolayer smectic, in which each layer contains approxi-
mately an equal number of molecules with dipole moments
pointing ‘up ’ and ‘down’ (shown in Fig. 2 as black and white
arrows), along the director, so that the layers have no net
polarisation. By contrast, the dipolar molecules with m�¼1.5
and m�¼2 tend to be arranged in such a way that the opposite
dipoles in neighbouring molecules are located at a minimum
distance, giving rise to the formation of interdigitated smectic
SAd

phases, with layer spacing se<sd<2se . Corresponding to
this pairing, the dipolar contribution to the energy goes from
being essentially negligible for m�¼1 to slightly negative for
m�¼1.5 and reaching 25% of the total energy for m�¼2 (Fig. 1).

In order to analyse in a quantitative way the molecular and
dipolar organisation, we have computed the radial distribution
functions g0(r) as

g0ðrÞ ¼
1

4pr2r
d r� r12ð Þh i12 ; ð7Þ

where h...i12 represents an average with respect to all the
molecular pairs, and the density along the director g(z) as
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gðzÞ ¼ 1

pR2r
d z� z12ð Þh i12 ; ð8Þ

which gives the probability for the intermolecular vector to
have a projection z along the director. Here z12¼r12	ê is mea-
sured with respect to the director frame, R is the radius of a
cylindrical sampling region, and the averages were computed
over all the molecular pairs. The density of dipoles along the
director g(zd) has been determined in a similar fashion using
zd12

¼rd	ê.
We have also computed the spatial–orientational correlation

function S110(r)25

S110ðrÞ ¼ � 1ffiffiffi
3

p d r� r12ð Þ ẑ1 	 ẑ2ð Þh i12 ; ð9Þ

which is basically the average scalar product between the
orientation of two molecules at distance r and describes their
tendency to align themselves parallel or antiparallel, as a
function of separation.

In the case m�¼1 [Fig. 3(a)–(d)], g0(r) shows the character-
istic double peak of a hexagonal arrangement of molecules in
smectic layers; the strong layering is confirmed by the function
g(z), while g(zd) indicates also a double stratification of dipoles
‘up ’ and ‘down’ within each molecular layer (see also Fig. 2);
finally the averaged Stone function S110(r) shows a weak cor-
relation of antiparallel pairs. This indicates that the monolayer
smectic is really of what we could call a SB1

type.
Increasing the dipole to m�¼1.5 [Figs. 4(a)–(d)] and also to

m�¼2 [Figs. 5(a)–(d)], the g0(r) gives a more complicated

succession of peaks. At short range these small peaks are due
to molecules which are not confined to the same plane as the
molecule at the origin, but are also placed in the upper and
lower neighbouring layers. Also the density g(z) showing the
splitting of the first peak and a spacing smaller than �2ss ,
which is significantly less than the scaled molecular length 3ss ,
is consistent with a structure where the layers are strongly
interdigitated. The dipolar density g(zd) presents the same
periodicity and also indicates that dipoles tend to organise
themselves in the interdigitation regions forming well defined
antiferroelectric planes of closely packed dipoles (see also
Fig. 2). Finally the S110(r) denotes the tendency for neigh-
bouring dipoles to have parallel correlations.

4 Theory

We now turn to developing an approximate theory for the
structure of highly ordered smectics of polar molecules. We
wish to complement the simulation study, particularly exam-
ining the predicted effect of changing dipole position and
strength.

We start by considering a system of N polar molecules in a
volume V and at temperature T, interacting with the pair
additive potential given in eqn. (4). Working in the NVT

ensemble the equilibrium Helmholtz free energy per particle is
approximated by extending the variational cluster expansion
method26 for describing spatially inhomogeneous ordered
fluids. Retaining the lowest order of the approximation, the
derived form of the free energy is a generalisation of the
Onsager free energy and is appropriate to describe order–

Fig. 1 Temperature dependence of the average dimensionless Gay–Berne hUGB�i and dipolar hUd�i energies per particle [panels (a), (c) and (e)]
and of the second-rank orientational order parameter hP2i [panels (b), (d) and (f)] for the three dipole strengths studied with the MC simulations
described in the text.
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disorder transitions (including isotropic, nematic and smectic
A phase symmetries).

Let us assume that the system can exhibit one-dimensional
long-range positional order, with periodicity sd , along the
macroscopic Z axis, while, in the XY plane, it behaves as a
two-dimensional liquid. In this case the singlet distribution
function (SDF) is of the form:

Pðr; ûÞ ¼ Sd

V
fðz;xÞ; ð10Þ

with f(z, x)¼f(z±nsd , x), n¼0,1,2,..., where x is the orienta-
tion of û. According to the variational cluster approximation,
the free energy density27,28 can be written as

F

NkBT
¼ F ideal

NkBT
� S

NkB
þ F int

NkBT
; ð11Þ

with

F ideal

NkBT
¼ ln

rL3

O

� �
� 1 ; ð12Þ

the ideal part, where L¼LtLr is the product of the transla-
tional and the orientational thermal wavelengths and O is the
orientational ‘volume ’. The second, entropic, term corre-
sponds to the loss of entropy if the SDF is not isotropic or
spatially uniform:

S

NkB
¼ �

Z sd

0

dz

Z
dxfðz;xÞ ln sd f ðz; xÞ½ �: ð13Þ

The last term in eqn. (11) corresponds to the interaction con-
tributions

F int

NkBT
¼ 1

2 rsd q z12; x1; x2ð Þh ih if ; ð14Þ

where

q z12; x1; x2ð Þ ¼
Z 1

�1
dx12dy12 1 � exp �U r12; x1; x2ð Þ=kBT½ �f g

ð15Þ

Fig. 2 Snapshots of the molecular organisation from the Monte
Carlo simulations of the N¼1000 system with an axial dipole: (a) m�¼1
and T �¼1.2 (SB); (b) m�¼1 and T �¼1.8 (N); (c) m�¼1.5 and T �¼0.8
(SAd

); (d) m�¼1.5 and T �¼1.2 (N); (e) m�¼2 and T �¼1.2 (SAd
); (f) m�¼2

and T �¼2 (N).

Fig. 3 Correlation functions from MC simulations: (a) radial g0(r
�), (b) density along the director g(z�), (c) orientational S110 (r�), and (d) dipolar

density along the director g(zd
�) for the system of N¼1000 rods with axial dipole m�¼1. The estimated fluctuations, shown here as error bars,

are plotted each 10 sampling bins.
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is the positional–orientational integral of the Mayer function
of the intermolecular potential [eqn. (4)] and the double angle
brackets indicate double averaging of the enclosed quantity
with respect to the two singlet distributions f(z1 , x1) and f(z2 ,
x2). In the same approximation the one-particle distribution
function is in turn given by

fðz;xÞ ¼ z
�1

exp ½ � rsd�qðz;xÞ�; ð16Þ

with

z ¼
Z sd

0

dz

Z
dx exp �rsd�q z;xð Þ½ � ð17Þ

and

�q z
1
;x 1ð Þ ¼

Z 1

�1
dz2

Z
dx2 q z12; x1; x2ð Þ f z2; x2ð Þ: ð18Þ

Eqs. (16) and (18) constitute a set of self-consistency condi-
tions from which, given T, r and sd , the singlet distribution
function is determined. Finally, for the layered phase, the
requirement of minimisation of the free energy with respect to
the layer spacing provides the equilibrium periodicity sd .

It is well known that molecular theories for hard particles
with shape anisotropy can give, on the above level of approxi-
mation, only a qualitative description of the phase sequence.
However, the resummation procedure of Parsons and Lee,29–31

Fig. 4 Correlation functions from MC simulations: (a) radial g0(r
�), (b) density along the director g(z�), (c) orientational S110 (r�), and (d) dipolar

density along the director g(zd
�) for the system of N¼1000 rods with axial dipole m�¼1.5. The estimated fluctuations, shown here as error bars, are

plotted each 10 sampling bins.

Fig. 5 Correlation functions from MC simulations: (a) radial g0(r
�), (b) density along the director g(z�), (c) orientational S110 (r�), and (d) dipolar

density along the director g(zd
�) for the system of N¼1000 rods with axial dipole m�¼2. The estimated fluctuations, shown here as error bars,

are plotted each 10 sampling bins.
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with a simple rescaling of the number density, incorporates
indirectly in the free energy all contributions due to molecular
clusters of order higher than two. This procedure leads to a
fairly good quantitative description of equations of state
involving liquid-crystalline phases. Unfortunately, there are no
analogous schemes for systems with particles interacting with
‘ soft ’ interactions.

Taking advantage of the separation of the intermolecular
potential into a ‘hard ’ and a ‘ soft ’ term, according to eqns.
(4)–(6), we have

q z
12
;x 1; x 2ð Þ ¼ q0 z12; x1;x2ð Þ þ q1 z12; x1;x2ð Þ; ð19Þ

with

q0 z
12
;x1; x2ð Þ

¼
Z 1

�1
dx12 dy12 1� exp �Uhard r12; x1; x2ð Þ=kBT

� �� �
; ð20Þ

and

q1 z
12
;x 1; x 2ð Þ ¼

Z 1

�1
dx12 dy12 exp �Uhard r12; x1; x2ð Þ=kBT

� �
� 1 � exp �U soft r12;x1;x2ð Þ=kBT

� �� �
: ð21Þ

Using eqn. (14) and assuming a standard resummation pro-
cedure (concerning the ‘hard ’ part of the interaction potential)
for the contributions to the free energy from particle clusters
larger than two (i.e. Parsons–Lee approximation29–31), the free
energy can be rewritten as

F int

NkBT
¼ F hard

NkBT
þ F soft

NkBT
; ð22Þ

with

F hard

NkBT
¼ 1

2 rsdaðZÞ q0ðz12; x1;x2Þh ih if ð23Þ

and

F soft

NkBT
¼ 1

2 rsd q1ðz12; x1;x2Þh ih if ; ð24Þ

and the singlet distribution function which now becomes

f z1; x1ð Þ ¼ z�1 exp �rsd aðZÞ�q0 z1; x1ð Þ þ �q1 z1; x1ð Þ½ �f g; ð25Þ

where we use the Parson–Lee approximation

aðZÞ ¼ ð4 � 3ZÞ
4ð1 � ZÞ2 ð26Þ

instead of having a(Z)¼1, which corresponds to the simple
two-molecule cluster approximation, with Z¼Nv0=V, v0 the
volume of the hard core of the particles.

Since we wish to study the nematic–smectic transition and
the molecular organisation in the smectic phase, we make the
assumption that the molecules are restricted to have their axes
parallel. This assumption is consistent with our computer
simulation results, according to which, in these smectics, the
second-rank orientational order parameter takes quite high
values, hP2i50.9. In this limit, integrals over orientations in the
relations of this section are replaced by a summation over the
two discrete orientations w, corresponding to the molecular
dipole parallel w+ or antiparallel w� to the macroscopic Z axis:Z

dx )
X

fwþ ;w�g
:

The above restriction on the molecular orientations simplifies
considerably the calculations of the positional–orientational
functions of eqns. (20) and (21). Thus, q0(z12 , w1 , w2) is
readily calculated analytically and q1(z12 , w1 , w2) by
numerical integration (see the Appendix). Having the above

kernels, the self-consistency condition in eqn. (25) is solved
iteratively.32

All the above simplifications aim primarily at the develop-
ment of a simple theory for studying the influence of molecular
dipoles on the tendency of Gay–Berne particles to form
smectic phases. Although the theory is applicable to first- as
well as to second-order phase transitions, we do not attempt to
address here the issue of the order of the N–SA phase transi-
tion. Taking into consideration that the N–SA phase transition
is either second- or weak first-order,1 we carry out all the
calculations at constant density, assuming that the volume
change at the transition is negligible and does not affect the
structural characteristics of the layered phases. Finally, in our
calculations it is assumed, in keeping with the simulation
results, that the systems under investigation do not exhibit
macroscopic polarisation and therefore possible convergence
problems of eqn. (24), due to the long-range character of
dipolar interactions, are avoided.33,34

4.1 Results from theory

We find that for a system of purely repulsive hard Gaussian
overlap ellipsoids, where the dipolar and attractive Gay–Berne
interactions are absent, the nematic to smectic phase transition
is exhibited at rHGO

��0.34. When the attractive part of the GB
potential is included, the smectic phase is stabilised with
respect to the nematic, since the nematic to smectic transition
moves to densities below rHGO

�, for the whole range of tem-
peratures.

It is known that using the Parsons–Lee resummation29–31

the transition densities of hard anisotropic systems are pre-
dicted fairly well. Thus we have chosen for the theoretical
calculations the same density employed in the NVT MC
simulations. Notwithstanding the good success of theory for
the purely repulsive term, it is known that this type of theory
strongly overestimates the transition temperature at given
density.35 In an effort to make contact and compare with
simulation results, this has led other workers35 to invoke dif-
ferent adjustable scaling factors for the strength of the average
attractive contributions in the various phases (isotropic,
nematic, smectic). Here we are interested in how the dipolar
interactions affect the molecular organisation in smectics, and
thus we simply compare theory and simulation using a reduced
temperature scale (TNS

�=T0
�), at constant density r�¼0.3, as a

function of the dipolar strength m� (Fig. 6). Here T0
� is the

temperature at which the transition for the apolar system takes
place. The different curves correspond to theoretical results for
various dipolar displacement, d�, from the centre of the
molecule. The symbols correspond to the scaled temperatures
(TNS

�(MC)=T0
�(MC)) obtained from the MC simulations of the

system with dipoles positioned at distance d�¼0.65 from the
molecular centre, as described in the previous section.

As suggested by the plots of Fig. 6, the presence of a central
dipole (continuous line) clearly moves the transition to higher
temperatures and stabilises the smectic phase with respect to
the nematic in agreement with previous simulation results in
both Gay–Berne15 and hard spherocylinder systems.36 The
situation changes upon displacing the dipole from the mole-
cular centre: in this case the arrangement of the molecules in
the usual SA layers does not correspond to the optimal dipolar
energy. Moreover, increasing the dipole strength m� up to
m��1.5, the off-centre longitudinal dipole opposes the layering
and destabilises the smectic phase with respect to the nematic,
as we have also found from MC simulation, at least for
d�¼0.65. Thus, for small and moderate dipolar strengths, the
nematic–smectic transition takes place at a lower temperature
upon moving the dipole from the centre near to the end of the
molecule. For fairly strong dipoles (m�52) the layered phase
gains some stability, probably in connection to bilayer for-
mation. However, it should be noted that for strong dipoles
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the validity limits of the theory are reached since molecular
association, due to dipolar dimerisation, is expected to play a
crucial role in the system behaviour.37 Quite similarly, com-
puter simulations where evolution takes place by standard
single particle moves would potentially run into difficulties due
to the dimerisation. In such cases cluster moves38 should
probably be employed.

The layer spacing appears in general to be quite sensitive to
both dipolar position and strength. Referring explicitly to the
case of d�¼0.65, studied in this paper, we see that the theo-
retical prediction for the nematic–smectic transition tempera-
ture is in fairly good agreement with the MC results. Indeed,
the layer spacing for m�¼1 lies in the range 3.5 to 3.6ss (i.e.
1.16–1.2se), and is practically temperature-independent, indi-
cating a well defined, not interdigitated, monolayer smectic
structure. On increasing the dipolar strength, the layer spacing
at the transition becomes wider and increases on lowering the
temperature, going up to 4.5ss (i.e. 1.5se). At the same time, as
can been seen in Fig. 7, the density profile within the layers
becomes broader (m�¼1.5) and for m�¼2 splits into two distinct
sublayers indicating clearly a bilayer structure. In the latter
case the distance between the two peaks approaches the
separation distance 4.0ss (i.e. 1.3se) of the centres of two
molecules with their dipoles dimerised in an antiparallel
configuration.

5 Conclusions

Computer simulations and variational theory suggest that the
overall molecular organisation of a smectic made of polar
uniaxial mesogens and its dipole organisation are strongly
influenced by the strength of the dipole when the latter is
located at an intermediate position between the centre of the
molecule and its end. At low temperatures a strongly inter-
digitated structure SAd

, with an antiparallel arrangement of
dipole moments, is formed and the degree of overlap between
layers increases as the dipole strength becomes larger. Indeed,
the origin of this structure may be due to the local coupling of
the dipoles, which produces staggered configurations that
cannot be packed into simple smectic monolayers.

Appendix: Calculation of q0 and q1

The excluded ‘area ’ q0 (z12 , w1 , w2) of two parallel ellipsoids
as a function of their centre-to-centre distance (the projection
of the intermolecular vector on their common orientation),
defined in eqn. (20), is easily calculated analytically:

q0 ðz12; w1; w2Þ ¼ p s2
s �

z2
12

k2

� �
Y s2

sk
2 � z2

12

� �
; ð27Þ

where Y is the Heaviside step function and k¼se=ss .
Obviously, there is no dependence on the orientation of the
molecules. To handle the long-range character of the dipolar
interactions, we separate the calculation of q1(z12 , w1 , w2),
defined in eqn. (21), into two parts:

(a) The short-range part q1
s(z12 , w1 , w2), which is calculated

numerically. This part receives contributions only from con-
figurations for which the second molecule lies within a cutoff
cylinder centred at the first one. Obviously for these config-
urations the Gay–Berne potential is non-zero, UGB 6¼0. Per-
forming the integrations in cylindrical coordinates we have

qs
1 z

12
;w 1; w 2ð Þ

¼ 2p
Z Rc

0

dr12r12 1 � exp � 1

kBT
U soft r12; w1; w2ð Þ

� �
 �
;

ð28Þ

where the radius of the cylinder Rc is the cutoff distance for the
Gay–Berne potential Rc

GB and jz12j<Rc
GB.

(b) The long-range part q1
l(z12 , w1 , w2), to which only the

configurations with the second molecule positioned outside the
cutoff cylinder contribute. For such configurations UGB¼0.
The large intermolecular distance allows the expansion of the
term [1�exp[�Ud(r12 , w1 , w2)=(kBT )]] in powers of m2=
(rd

3kBT ) and we get

q l
1 z

12
;w 1; w 2ð Þ ¼ 2psd

Z 1

Rc

dJ12J12

X
m¼1

1

m!
� 1

kBT
Ud r12; w1; w2ð Þ

� �m
; ð29Þ

where Rc¼0 if jz12j>Rc
GB and Rc¼Rc

GB if jz12j4Rc
GB. In the

above expansion each term can be calculated analytically. In
our calculations we have truncated the expansion past the
m¼6 term.

Having obtained the functions q0 (z12 , w1 , w2) and q1 (z12 ,
w1 , w2) we can proceed to calculate the SDF at a given T and
r for various periodicities sd . This is done numerically using
the following iterative scheme:32

fmþ1 z
1
;w 1ð Þ ¼ z�1 exp �rsd aðZÞ q0ðz12; w1; w2Þh ifmðz2;w2Þ

hn
þ q1 ðz12; w1;w2Þh ifmðz2;w2Þ

io
; ð30Þ

Fig. 7 Singlet distribution function at T �
NS=T

�
0¼0.33 as obtained

from variational cluster theory for the three different dipolar strengths
and d�¼0.65.

Fig. 6 Scaled nematic–smectic transition temperatures, at constant
density r�¼0.3, as a function of the dipolar strength m�, for different
distances d� of the dipole from the centre of the molecule. The curves
are results obtained from variational cluster theory. The values from
the MC computer simulation with d�¼0.65 (stars) are reported for
comparison.
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with convergence criterion jfm+1(z1 ,w1)� fm(z1 ,w1)j<10�5ss
�1,

for all (z1 , w1). Here the angle brackets indicate averaging with
respect to the singlet distribution fm (z2 , w2).
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