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Variational cluster calculations and Monte Carlo simulations are applied to hard-body board-like models of
biaxial molecules forming liquid crystalline phases. The molecular long axes are assumed for simplicity to be
fully oriented. Depending on the extent of transverse anisometry in the molecular shape, these systems can
exhibit biaxial nematic phases as well as uniaxial and biaxial orthogonal smectic phases. It is shown that the
region of thermodynamic stability for the biaxial nematic phase is considerably broadened in binary mixtures of
molecules with the same cross section but differing in their long dimension.

I. Introduction

The existence of thermotropic biaxial nematics is one of the
long standing problems in liquid crystal science. They have
been constantly attracting experimental, theoretical and com-
puter simulation research interest for over three decades1–44

and yet no stable low molar mass thermotropic biaxial nematic
phase has to date been conclusively identified by experiment.
In fact, reports on the observation of any type of real biaxial
nematic phase, be it in a lyotropic5 or polymeric19 system,
are scarce in the literature. Indeed, there are several instances
of systems that were initially reported as biaxial nematics but
these were later found not to be so.28,38 However, preliminary
reports provide strong indications that thermotropic biaxial
phases may have been stabilised in at least two different cases,
namely bent-core mesogens45 and rod-plate systems.46 Indeed,
an orthogonal biaxial smectic phase has already been reported
for banana shaped molecules.47,48

On the other hand, theory and computer simulations not
only support the possibility of thermodynamically stable biax-
ial nematic phases but also suggest several molecular models
and corresponding approaches for the realization of biaxial
nematics .1–4,6–18,20–27,29–37,39–43 However, of equal importance
to supporting the possibility of biaxial nematic phases, theo-
retical and computer simulation investigations also give a
useful insight into why the realization of such systems is diffi-
cult .12–14,30,35,40 Thus, for example, the seemingly simple
approach of generating a biaxial nematic phase by mixing two
uniaxial phases with non-coincident directors, typically a rod-
nematic and a disc-nematic phase, is plagued by difficulties
with the miscibility of the components12,13,21,26,40,42,43 and, as
model calculations suggest, some chemically demanding fine
tuning of the molecular associations is required in order to
keep the constituent phases together as a biaxial fluid rather
than phase separating into the two uniaxial phases.30,35,40

Stabilization of biaxial phases in single component systems
is based on the optimisation of the molecular (typically shape)
biaxiality. These approaches are faced with difficulties of a dif-
ferent kind. Molecular biaxiality, although readily quantifiable
in the context of various models and idealized representations
of molecules, becomes difficult to quantify in the case of actual

thermotropic nematic molecules (nematogens), where different
types of interactions are present that cannot be ignored. This
renders the transcription of the ‘optimal ’ molecular biaxiality
into a concrete chemical structure a major task in itself. This
task is further complicated by molecular flexibility, which is
not negligible for common nematogens at finite temperatures,
and makes it necessary to consider simultaneously many con-
formations for the evaluation of the ‘average ’ biaxiality. The
major difficulty associated with the latter is that the average
biaxiality could differ considerably between isolated molecules
and molecules in the nematic bulk where, for example, low
energy conformations could become disfavoured due to their
inefficient packing relative to other, higher energy conforma-
tions that pack more efficiently.35 Finally, what is required of
the ‘optimal ’ molecular biaxiality is not only to stabilise the
biaxial nematic phase relative to the uniaxial nematic but rela-
tive to all the other possible competing phases, such as the
smectic and the columnar fluid phases and the solid phases.
Given the aforementioned difficulties, a systematic determina-
tion of actual molecular structures that satisfy all the require-
ments for nematic biaxiality is a rather complex matter.
Part of the complexity can in principle be removed if the

stabilization of the biaxial nematic relative to its non-nematic
competitors can be enhanced independently of the optimisa-
tion of molecular biaxiality. What is essentially sought in this
case is a mechanism to destabilise the competing phases with-
out affecting the stability of the biaxial nematic relative to the
uniaxial nematic phase. The present work concerns the explora-
tion of such mechanism for rod-like or prolate biaxial nemato-
gens. In this case the prime competing phases are the layered
smectic phases, which may be uniaxial or biaxial.
We examine the possibility of extending the biaxial nematic

range by destabilizing the smectic phase that occurs at higher
densities or lower temperatures. Simulation studies of uniaxial
systems of two-component mixtures of parallel spherocylin-
ders of differing length and long spherocylinders with polydis-
persity in length49,50 have shown that the smectic phase can be
destabilized since the layered structure cannot accommodate
the differing lengths. In these studies of uniaxial particles with
a circular cross section, the smectic phase is often replaced with
a columnar phase and so the nematic range is not extended
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significantly. However, if the particles are not uniaxial then the
columnar phase should be less favoured, since they would not
be expected to pack efficiently into columns without first align-
ing to form an ordered, biaxial phase. The use of mixtures of
biaxial particles of differing lengths should, therefore, allow
us the possiblility of extending the range of the biaxial nematic
phase for systems in which it exists, or reveal a biaxial nematic
phase in systems that would form this phase, if the smectic
phase was not present. Essential to this alternative approach
towards stable biaxial nematics is that the two (or more) com-
ponents of the mixture do not generate miscibility difficulties.
This could be achieved by using molecules of different lengths
but of identical transverse cross section.
In this paper we use variational cluster expansion theory, in

the two-site cluster approximation,51 and Monte Carlo compu-
ter simulations to investigate these ideas. To model the biaxial
molecules we use a simple hard body idealisation of the mole-
cular shape, namely a lath shaped cuboid of dimensions a:b:c
(with a� b > c). In the limit that one dimension of the parti-
cles is much larger than the other two, we only need to con-
sider the limiting case of perfectly aligned system. This is
because we expect that the (uniaxial) nematic–isotropic tran-
sition will occur at much lower densities than any transition
from a uniaxial nematic to either a biaxial nematic or a uni-
axial or biaxial smectic. The former will be similar to the
nematic–isotropic transition exhibited by infinitely long uni-
axial rods52 and so will occur at vanishingly small densities.
Within this approximation, we limit ourselves to a simple
model for studying systems of long biaxial particles which pos-
sess a uniaxial nematic phase. Clearly, this model cannot be
used to investigate the critical point in the phase diagram
where the continuous isotropic to biaxial nematic (I–NBX)
transition is predicted to occur as the behaviour shifts from
that of a rod-like particle (I–N+–NBX) to that of a disk-like
one (I–N�–NBX). This has been studied elsewhere both theore-
tically4 and by simulation.18 A particular advantage of study-
ing perfectly ordered systems, is that the length of the particle
need not be specified because an affine transformation along
the director will not change the properties of the system, apart
from a trivial scaling of the density and pressure. Since the
length need not be specified, we characterize the shape biaxial-
ity of the particles r by the ratio of the other two dimensions,
namely r ¼ b/c. The above simplifications lead to a highly
idealised representation of the common thermotropic liquid
crystalline phases. Such a description is, however, adequate
for the presentation of the basic idea, namely destabilising
the smectic phases to reveal or extend the biaxial nematic
phase.
The rest of the paper is laid out as follows. In Section II, we

describe how the phase stability and hence the phase diagrams
may be obtained by theoretical methods. We use computer
simulations of the same models, which are also described in
Section II, to test the theoretical predictions. The phase dia-
gram for a single component system of aligned biaxial laths
as a function of their biaxiality is presented in Section III. In
Section IV we consider how this phase diagram changes when
mixtures of particles with differing lengths are used. Finally, we
discuss results and present our conclusions in Section V.

II. Variational cluster theory and computer
simulations

The aim of the theoretical calculations is to determine the
liquid crystal phase behavior of a binary mixture composed
of lath-like particles with their molecular z-axes perfectly
oriented parallel to the macroscopic Z-axis. The translations
of the molecules as well as rotations about their z-axis are
unrestricted. Under these conditions, the least ordered phase of
the system is a homogeneous phase with uniformly distributed

molecular rotations about the z-axis. This implies for the prin-
cipal order parameters hcos 2ji ¼ hcos 4ji ¼ 0,where the angle
j describes rotations about the molecular z-axis and the angu-
lar brackets denote equilibrium ensemble averages. This phase
is described as uniaxial nematic, NU , and the macroscopic
Z-axis is a C1 axis. The system can exhibit two more uniform
phases but of higher orientational order, consistent with the
molecular symmetries:
The first phase is described as tetratic nematic, NT , wherein

the macroscopic Z-axis is a C4-axis. Here hcos 2ji ¼ 0 and
hcos 4ji 6¼ 0.
The second is described as biaxial nematic phase, NBX , and

the macroscopic Z-axis is a C2-axis. Here hcos 2ji 6¼ 0 and
hcos 4ji 6¼ 0.
In addition to the uniform phases we wish to study the ther-

modynamic stability of layered mesophases with a density
modulation along the macroscopic Z-axis. The orientational
order, together with the degree of one dimensional (1D) posi-
tional order, is used to characterize the layered phases. In close
analogy to the uniform phases, there are three distinct ortho-
gonal smectic phases; the uniaxial smectic, SU , with the sym-
metries of the conventional SmA phase, the tetratic smectic,
ST , and the biaxial smectic, SBX . The identification of the dif-
ferent uniform or layered phases is based on mean field consid-
erations of molecular symmetry and therefore assumes that the
molecular ordering, orientational and/or positional, is of long
range.

A. Two component mixtures

We first consider the theory for a mixture of two species, A and
B. To study the liquid crystalline phase transitions we have
extended the variational cluster expansion method26,51 to
include not only the orientational ordered phases but also
phases with 1D positional order. According to this approach,
which is an extension of the Onsager molecular theory for uni-
axial nematics,52 the Helmholtz free energy of the system, F,
and the distribution functions, fi(z,j), for the different species
(i ¼ A, B) are calculated in terms of the intermolecular poten-
tial. To this end the evaluation the following integral is needed

qijðz1;2;j1;2Þ ¼
Z

dx1;2 dy1;2ð1� exp½�buijðr1;2;j1;2Þ�Þ: ð1Þ

For hard-body intermolecular interactions the function
qij(z1,2 ,j1,2) is simply the area that is excluded to a particle
(labelled as particle 1) with dimensions (ai ,bi ,ci) by a second
one (labelled as particle 2) with dimensions (aj ,bj ,cj) for a rela-
tive orientation j1,2 and projection, z1,2 of the intermolecular
vector on the molecular z-axis. Straightforward geometrical
considerations lead to the following closed form expression
for the integral in eqn. (1),

qijðz1;2;j1;2Þ ¼ ðbjcj þ bici þ j cosj1;2 j ðcibj þ cjbiÞ
þ j sinj1;2 j ðcicj þ bibjÞÞ

�Y
ai þ aj

2

� �2

� z21;2

 !
ð2Þ

in which Y denotes the step-function; Y(x) ¼ 1 or 0 for x� 0
or x< 0, respectively.
For a binary mixture with number density r ¼ N/V and

compositions xA and xB ¼ (1� xA), the single particle distri-
bution functions for the two components are given by

fiðz1;j1Þ ¼
1

zi
exp �rd xihqiiðz1;2;j1;2Þifiðz2;j2Þ

�h
þ xjhqijðz1;2;j1;2Þifjðz2;j2Þ

�i
¼ 1

zi
exp½�rd�qqiðz1;j1Þ�: ð3Þ
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with zi the normalisation constant,

zi ¼
Zd
0

dz

Z2p
0

dj exp �rd�qqiðz;jÞ½ �: ð4Þ

In these equations d is the layer spacing of the smectic phase
such, that fi(z� nd,j) ¼ fi(z,j), with n ¼ 1,2,. . . and the sub-
scripts of the angular brackets indicate the distribution func-
tions with respect to which the averaging is taken. In more
elaborate calculations, r is replaced by an effective den-
sity51,53,54 but this would constitute an unnecessary complica-
tion in view of the other simplifications introduced in the
present model.
To determine the single particle distribution functions fi

for given r and xi (eqn. (3)) are solved iteratively. For each
of the phases studied, the iterative procedure is initiated with
trial distribution functions of the appropriate symmetry. Hav-
ing obtained all the possible solutions for the given thermo-
dynamic conditions and for values of the layer spacing in the
range 1/2 min{{aA ,aB}� d� 3 max{aA ,aB}, the thermodyna-
mically stable phase is identified as the solution that yields
the lowest value for the free energy density of the system. The
latter is evaluated from the expression

bF
N

¼ ln r� 1þ
X
i

xi lnxi �
X
i

xi ln zi=d

� 1

2
rd
X
ij

xixj qijðz1;2;j1;2Þ
� �

fi ;fj
; ð5Þ

where the summation indices run over the molecular species A
and B. All the transitions between the phases studied are of
second order. To ensure that these phases correspond indeed
to the global minimum of the free energy and, therefore, that
the system does not separate into two coexisting phases, I
and II, with different densities and compositions, we check
for possible solutions of the following three coexistence
equations

PIðxIA; rIÞ ¼ PIIðxIIA; rIIÞ
mIi ðxIA; rIÞ ¼ mIIi ðxIIA; rIIÞ; ð6Þ

using the molar fraction of the component A in phase I as a
free parameter. In eqn. (6), PI (PII) is the pressure of phase I
(II) and mIi (m

II
i ) is the chemical potential of species i ¼ A, B

in phase I (II). No phase coexistence is detected for any of
the systems studied, in accord with the second order character
of the phase transitions.

B. Single component systems

Reduction of eqns. (1)–(5) to a single component system yields
a straightforward description for the pure phases. In this case,
the excluded area function becomes

qðz1;2;j1;2Þ ¼ bc 2þ 2 j cosj1;2 j þ rþ 1

r

� �
j sinj1;2 j

� �

�Y a2 � z21;2

� �
; ð7Þ

where the transverse aspect ration r ¼ b/c is taken as the
quantitative measure of the molecular biaxiality. The distribu-
tion function has the form

f ðz1;j1Þ ¼
1

z
exp½�rd�qqðz1;j1Þ�; ð8Þ

with

�qqðz1;j1Þ ¼ qðz1;2;j1;2Þ
� �

f
¼
Zz1þa

z1�a

dz2

Z2p
0

dj2 f ðz2;j2Þ

� qðz1;2;j1;2Þ; ð9Þ

where the limits for the z2 integration are determined by the
hard-body character of the function q(z1,2 ,j1,2) which vanishes
outside the range |z1,2|< a.
We proceed with a stability analysis of the NU with respect

to the NBX and to the SU phases by assuming that the single
particle pseudo-potential q̄(z,j) for the NBX and the SU phases
can be written respectively as

q�NBX
ðz;jÞ ¼ C0 þ tCTðjÞ ð10Þ

and

q�SUðz;jÞ ¼ C0 þ lClðzÞ ð11Þ

where CtðjÞ ¼
ffiffiffiffiffiffiffiffi
1=p

p
cosð2jÞ; ClðzÞ ¼

ffiffiffiffiffiffiffiffi
2=d

p
cosð2pz=dÞ

and t and l are expansion parameters that vanish in the uniax-
ial nematic phase and acquire non-vanishing but small values
near the NU–NBX and NU–SU phase transitions, respectively.
Expanding eqn. (8) with respect to the expansion parameters
t and l, and neglecting quadratic or higher terms, and

taking into account that t ¼
R2p
0

djCtðjÞ�qqNU
ðz;jÞ and

l¼
Rd
0

dzClðzÞ�qqSUðz;jÞ; we find the following conditions for

the phase transitions

rNU-NBX
¼ 1

abc

3p
4

r

ð1� rÞ2
ð12Þ

and

rNU-SU ¼ � 1

abc

2pa=d
sinð2pa=dÞ

pr=4

ð1þ rÞ2 þ pr
ð13Þ

The right hand side of eqn. (13) takes its minimum positive
value when d� 1.398a, which gives the layer spacing at the
transition. The three phases merge at a triple point when
rNU–NBX ¼ rNU–SU

. This condition allows the calculation of
the critical value of the molecular biaxiality, rc� 15.297, which
gives the limit for the molecular biaxiality below which the
biaxial nematic phase cannot occur. The packing fraction
at which the three phases merge is then calculated from
eqn. (13) for r ¼ rc and it is rcv0� 0.176 where v0 ¼ abc is
the molecular volume.

C. Computer simulations

To test the predictions of the theory, we have performed com-
puter simulations to determine the phase diagram for the single
component system and for three different equimolar mixtures.
The crucial feature of any hard-body simulation is the overlap
routine and, for the case of aligned board-like biaxial particles,
this is particularly simple. If the separation of two similar par-
ticles resolved along the director is greater than their height,
then they cannot overlap. If this separation is less than the
height, then the overlap test reduces to a test for overlapping
rectangles in a plane, which further reduces to a sequence of
overlap tests for line segments in two dimensions.55,56 For
the infinitely thin case (when c is zero), we need perform only
a single line segment test. The overlap test for two particles of
differing height is also straightforward, with the average of the
two heights replacing the height. The single component system
was studied using constant pressure simulations for a range of
molecular biaxialities r ¼ b/c between four and infinity; for
finite values of the aspect ratio, systems of 500 particles were
used, whilst for b/c ¼ 1, larger systems of 1000 and 4000
were used. The simulation box was taken to be rectangular,
and the dimensions of the box were allowed to change inde-
pendently of each other. As already noted, as the system is
aligned the phase behaviour is independent of the height (a)
of the particle, which influences the pressure and density only
via a simple scaling relation; pressure P* ¼ P/ab2, density
r* ¼ Nab2/V, where N is the number of particles. In practice,
we chose the height a ¼ 1, the width b ¼ 1 and breadth
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c ¼ 1/r for the simulations. The simulations for the finite
aspect ratio systems (500 particles) were started from a simple
lattice with either four or five layers of 125 or 100 particle per
layer, respectively. The simulations were typically run for
50,000 cycles to equilibrate the system and then a further
250,000 cycles to calculate the properties of the system,
although longer runs of up to 500,000 cycles were used in
the vicinity of the transitions. Both compression and expansion
runs were used.
In addition to the equation of state for each system, we also

require two order parameters to identify the phases, one to
measure the biaxiality of the system and the other to measure
the extent of the layering. We measure the biaxiality through
the biaxial order parameter hcos 2fi. To characterize the layer-
ing of the system, we calculate the structure factor along a
direction parallel to the director for a range of wave vectors
corresponding to a layer spacing of a/2 up to 3a. When the
system is layered, the structure factor for the wave vector cor-
responding to the layer spacing has a value of O(N), whereas
this is O(1) for non-layered systems.57 The height and location
of the maximum in the structure factor therefore provides
information both on the extent of smectic order and the layer
spacing. Typical plots of the orientational and positional order
parameters are shown either side and close to the switch over
between NU–SU–SBX and NU–NBX–SBX behaviour in Fig. 1.
Since the transitions in this aligned system are expected to be
continuous, it is difficult to pin down the exact densities at
which they occur. To be consistent for the different aspect
ratios, we take the biaxial ordering transition to occur at the
density at which hcos 2fi ¼ 0.5 and the layering transition to
occur at the density at which the height of the peak in the
structure factor is 1/5th of its theoretical maximum. Whilst
this gives us a reasonable indication of the densities at the
transitions, these are clearly approximate as they depend on
our criterion for deciding when the transition has occurred.
However, over a large proportion of the range of biaxialities
studied, the simulations give a good indication of the phase
sequence, although the continuous nature of the transitions
makes determining the phase sequence difficult near r	 10
(see Fig. 1(b)).

III. Phase diagram of monodisperse biaxial rods

The phase diagrams for the single component systems deter-
mined by theory and simulation are shown in Fig. 2. The
topology of the phase diagrams determined by the different
methods is clearly very similar, although we note that the
molecular biaxiality r at which the cross over from NU–SU
to NU–NBX behaviour is slightly higher for the phase diagram
obtained by theory compared to that determined by simula-
tion. Since the NU–NBX and NU–SU transitions in this aligned
system are continuous, it is difficult to pin down the exact tran-
sition density from the order parameters determined in the
simulation, but we can get a rough idea of the location of
the transition and a good idea of the phase sequence. The
situation is even worse near the cross over from NU–SU to
NU–NBX behaviour since both order parameters increase over
the same density range and so we cannot be totally sure if we
even get the phase sequence correct in the vicinity of the cross
over point. We should also point that since the simulations
were performed on relatively small systems, both the smectic
and biaxial correlations may be enhanced compared to those
expected in a larger system due to the small size of the box.
Whilst this might shift the transition densities slightly, it is
not clear if this would change the phase sequence for a parti-
cular molecular biaxiality and thus shift the cross over point.
However, even with these possible failings in the simulations,
it is clear that the theory and simulation do indeed give a very
similar topology for the phase diagram.

Fig. 1 Simulation data for (S) the biaxial order parameter hcos 2fi
and (X) the height of the maximum in the structure factor
hSk(max)i/N as a function of density r* ¼ Nab2/V for different aspect
ratios (a) r ¼ 4, (b) r ¼ 10 and (c) r ¼ 15. The vertical lines indicate the
approximate locations of the transitions. For clarity, only compression
data is shown.

Fig. 2 The phase diagram for monodisperse hard-body lath-shaped
molecules as a function of their molecular biaxiality (transverse aspect
ratio r); r* ¼ Nab2/V. The circles with the error bars correspond to
the simulation results for the transition densities; the dotted line ser-
ves as a guide to eye. The solid lines correspond to the theoretical
predictions.
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Both phase diagrams indicate that the density at which the
NU–NBX phase transition takes place is essentially indepen-
dent of r, once this is greater than about 10:1. This phenom-
enon is similar to that observed for the nematic–isotropic
transition for hard disc models, where cut spheres of aspect
ratio less than 0.1 behave in essentially the same way as infi-
nitely thin discs.58 It is also apparent in Fig. 2 that the slope
of the NBX–SBX line is very sharp near the critical biaxility
for both theory and simulations. Furthermore, the agreement
between theoretical and simulated phase diagrams improves
as the biaxiality r increases and this is consistent with the
increasing accuracy of the theory with r, becoming the two-
dimensional Onsager model52,59 in the limit of infinite r.
We close the discussion of the single component phase dia-

gram by noting that the tetratic nematic and smectic phases,
allowed by the theoretical calculations, occurs at fairly low
values of r (r< 1.5) and higher densities than those shown in
Fig. 2. Accordingly it is very likely that this phase is preempted
by the formation of a solid and in any case is not relevant to
the stability of the biaxial nematic phase.

IV. Length bidisperse mixtures of biaxial rods

Having successfully tested the reliability of the theoretical pre-
dictions using computer simulations, at least for single-compo-
nent systems and on a semi-quantitative level, we proceed to
the theoretical calculations for binary mixtures of lath-shaped
rectangular boxes of the same transverse dimensions b, c but
differing in their length a.
We present results for systems of molecular length ratio 0.6.

Aside from avoiding length matching, such as lengths in the
ratio 1:2, which could possibly favour accidental intra-layer
sublayering, the choice of length ratios is somewhat arbitrary.
Phase diagrams are presented in Fig. 3 for three binary mix-
tures differing in the (common) molecular biaxiality r of the
two components. The biaxialities chosen are r ¼ 8, 10 and
17.5. Since the first two values yield a phase sequence NU–
SU–SBX for the monodisperse system, they are suitable for test-
ing the extent to which length bidispersity could enhance the
relative stability of the biaxial nematic phase. In contrast, the
monodisperse system for r ¼ 17.5 exhibits a NU–NBX–SBX
phase sequence and so we can investigate whether the range
over which the biaxial nematic phase is stable can be extended
by introducing length dispersity.
It is clear from Fig. 3(a) and (b) that for both r ¼ 8 and 10, a

stable biaxial nematic can be observed in a binary mixture. For
r ¼ 8 a small NBX window appears at low concentrations of
the long component. The biaxial window for the system with
r ¼ 10 is quite large and extends over a much larger range of
molar fractions from xA ¼ 0.15 to 0.65. An important out-
come of both phase diagrams is that the 50:50 mixture is not
the optimal mixture for the biaxial nematic phase. Whilst a
NBX phase is observed for the 50:50 binary mixture with
r ¼ 10, the range is relatively small in comparison to the
30:70 mixture; for the system with r ¼ 8, a NBX phase is not
found for the 50:50 mixture but is present over a narrow range
for mixtures in which the concentration of the longer species is
lower. Another noteworthy feature of the phase diagrams in
Fig. 3(a) and (b) is that the concentration bounds of the biaxial
nematic are four-phase merging points; that is, NU , NBX , SU
and SBX phases all merge at these points on the (Z*,x) diagram.
For the case r ¼ 17.5 (Fig. 3(c)), where the phase sequence
NU–NBX–SBX is observed for a monodisperse system, we
observe that the range of the biaxial nematic phase is greatly
enhanced for the mixture compared to the monodisperse sys-
tem. We again observe that the optimal mixture is not centred
at 50:50, but shifted to lower values for the concentration of
the longer species. All the mixtures in Fig. 3 are stable against
demixing in all the phases considered. This stability is a

consequence of choosing the components of the bidisperse
mixtures to have identical cross-sections and is further enhan-
ced by the alignment of the bidisperse molecular direction along
a common director.60

V. Discussion and conclusions

We have shown that systems of aligned biaxial lath shaped
particles exhibit a phase sequence that depends on their cross
sectional aspect ratio, which is identified as the ‘molecular
biaxiality ’. Single component systems of particles with a large
molecular biaxiality exhibit a uniaxial nematic phase, followed
by a biaxial nematic and a biaxial smectic phase on increasing
the density. The density range over which the biaxial nematic
phase is observed is gradually reduced as the cross sectional
aspect ratio is lowered. Eventually, the biaxial nematic phase
is no longer observed, rather the uniaxial nematic phase under-
goes a transition to a unixial smectic, which is then followed by
a biaxial smectic phase. The major result of this work is that

Fig. 3 Theoretical phase diagrams for length bidisperse mixtures
with molecular length ratio aB/aA ¼ 0.6; reduced density, Z* ¼ (N/
V)b2(aAxA+ aBxB) against concentration of the long component, xA .
Both components, A and B, have the same biaxility r: (a) r ¼ 8, (b)
r ¼ 10 and (c) r ¼ 17.5.
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the cross over point, at which the biaxial nematic phase is
stabilized with respect to the uniaxial smectic phase, can be
shifted to lower aspect ratios by using mixtures in which the
particles have identical cross section dimensions but differ in
their lengths. The use of such mixtures may possibly lead to
the observation of biaxial nematic phases for molecules having
less extreme molecular biaxialities than would be required for
single component systems. The model systems chosen to illus-
trate this possibility, as well as the statistical mechanics analy-
sis used, are of course too simplified to offer any quantitatively
usable information for molecular design purposes. However,
this work has shown that the basic principle of destabilising
the competing smectic phases by using mixtures of lengths does
indeed lead to the increased stability of the biaxial nematic
phase. The results also indicate that 50:50 mixtures are not
optimal for the observation of the biaxial nematic phase.
We can compare the behaviour of this three dimensional

(3D) system with that observed in two dimensions (2D). Since
our system is perfectly aligned, a cut through the 3D system at
constant z leads to a 2D system of hard rectangles of length b
and width c. Although freely rotating hard rectangles in 2D
have not been studied, circular capped rectangles of length L
and width D have,56 and for these no (2D) nematic phase is
observed if the aspect ratio L/D is less than about 7; due to
the extra circular cap, this apect ratio is similar to rectangles
with b/c ¼ 8. Thus we would not expect to observe a biaxial
nematic phase for hard body, length disperse mixtures when
the common cross sectional aspect ratio is less than b/c’ 8,
no matter how disperse the lengths are. This 2D system there-
fore gives us an approximate lower bound for the cross section
at which a biaxial nematic phase can exist for 3D hard body
systems. Indeed, this seems to be borne out by the theoretical
phase diagrams (see Fig. 3), since the biaxial nematic pocket
disappears just below b/c ¼ 8. Moreover, we did not observe
a SU–SBX transition in the simulations for r< 8, although this
may just occur at much higher densities than those studied.
However, a nematic phase has been observed in a 2D model
with (anisotropic) attractive interactions with a less extreme
aspect ratio (	4).61 We may speculate that biaxiality in the
attractive forces for the 3D model, which we expect for real
molecules, may further reduce this lower bound above which
the biaxial nematic phase is possible if the lengths are tailored
so as to disrupt the smectic phases.
Comparison of the 3D system with 2D systems also intro-

duces an interesting point concerning the long-range nature
of orientational order in biaxial phases. Our hard body,
aligned system is probably the simplest system in which a biax-
ial phase can exist and, as we have seen, the biaxial ordering in
3D can be reduced to the orientational ordering in a 2D sys-
tem. However, most 2D systems of rod-like particles appear
to exhibit a continuous Kosterlitz–Thouless (KT) disclination
unbinding type transition between the 2D nematic and isotro-
pic phases (see, for example, ref. 56 and references therein).
This implies that the orientational order within the slice
through the box at constant z is not truly long range but
decays algebraically, although claims for true long-range 2D
order have been made for some 2D models.61 Experimentally,
monolayer discotic systems with the disc normal parallel to the
substrate have been reported to exhibit in-plane alignment cor-
responding to 2D biaxial ordering.62 The theory used here to
study the aligned system does not account for KT type transi-
tions and the simulations used are not large enough to be able
to distinguish between quasi and true long-range order in the
system along the second axis. Indeed, in all simulations of
biaxial nematics of freely translating particles,18,32 the box size
has not been large enough to determine the nature of the long-
range decay of the orientational correlations for the minor
axes. In ref. 32, large (3D) systems of 8192 biaxial Gay–Berne
particles are used to investigate the structure of the biaxial
nematic phase. Although the systems studied in ref. 32 appear

to be biaxial nematic, it is not obvious that the relevant corre-
lation function has decayed to a finite value in the long-range
limit for the temperature corresponding to the biaxial nematic
phase, thus it is not clear that there is true long-range rather
than quasi-long-range biaxial order in this system. Relaxing
some of the restrictions of our simple aligned system, such as
allowing the particles to rotate about the two shorter axes or
changes in particle shape, for example, to a hard ellipsoid, will
lead to shape and size dispersity within the cut layer at fixed z,
leading to a system in which the particles are polydisperse in
size and shape. However, we do not expect that polydispersity
will stabilise 2D long-range orientational order and so we may
wonder if true biaxial nematics can exist. Note that this argu-
ment applies to pure systems with a single director or mixtures
in which the directors are coincident and not to mixtures
(such as rod–disc mixtures) in which the directors are
non-coincident.
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