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We present a statistical mechanics approximation scheme for the explicit treatment of spacer-
mediated configurational correlations among the mesogenic units that form a dimer molecule.
The approximation is applied to the description of the nematic phase of linear uniaxial dimers
interacting via a standard molecular pair-potential. Transition temperatures, order
parameters and pair correlation averages are calculated for different spacer lengths. The
results readily reproduce the experimentally observed trends of phase transition thermo-
dynamics and of dipolar correlations deduced from dielectric studies.

1. Introduction

Typical liquid crystal (LC) dimers consist of two

mesogenic cores linked by means of a flexible alkyl

spacer. Their first appearance in the literature dates

back to Vorländer [1]. Dimer LCs reappeared (under

various names) in the literature about half a century

later [2, 3] and their systematic study was put forward

by Luckhurst and co-workers about twenty years ago

[4–6]. Part of the interest in LC dimers is related to their

usefulness as model systems for studying LC polymers

[3–7], but their polymorphism also makes them inter-

esting in their own right [8]. The mesomorphic

behaviour of LC dimers shows certain striking differ-

ences from that of conventional mesogens. In particu-

lar, the transition temperatures from the isotropic to the

LC phase, and the respective order parameters of some

of the most common homologous series of dimers, show

dramatic alternations with spacer length. These alter-

nations are usually referred to as odd–even effects,

where the parity refers to the number of carbons in the

spacer.

Despite the advances in the experimental study of LC

dimers [8], molecular theory has not progressed much

beyond the initial successful interpretation of the odd–

even effects in terms of spacer conformations. More

specifically, the influence of the core–spacer linkage

geometry on the orientational ordering of the dimers in

the nematic phase has been studied by NMR spectro-

scopy and has been accounted for quite accurately with

the cord model [9]. This model was subsequently

extended to provide a unified description of orienta-

tional ordering and nematic–isotropic phase transitions

for linear dimers, oligomers and main chain polymers

[10]. Moreover, various alternative schemes of convey-

ing the structural differences between odd and even

dimers have been proposed and explored in the context

of phenomenological nematic mean-field calculations

[11, 12] and molecular simulation studies [13]. Finally, a

systematic description of the shape and deformability of

dimers in terms of structural shape parameters has been

introduced [14] and applied to the identification of the

intrinsic shape parameters that give rise to the odd–even

effects in dimers with various core–spacer linkage

geometries. Nevertheless, a number of important issues,

such as the very rich smectic polymorphism of LC

dimers [8], the possibility of their biaxial ordering in the

nematic phase, and their static and dynamic dielectric

properties, remain essentially unaddressed on the

molecular theory level. On the other hand, computer

simulations [15, 16] have successfully explored smectic

polymorphism and microsegregation phenomena in

model LC dimers, thus offering new insights that were

inaccessible by molecular theory.

The differences between the nematic behaviour of

simple conventional mesogens (hereafter to be referred

to as monomers) and dimers are thought to stem

entirely from the configurational correlations that the

spacers impose on the mesogenic units [4–6, 9, 10].

Accordingly, the inclusion of such correlations consti-

tutes the major step in the formulation of a molecular

theory that goes from the description of single mesogen

self-organization to dimer and then on to multi-

mesogen phases. The present work is concerned with

this step. To develop a suitable statistical mechanics

approximation we formulate the configurational parti-

tion function of a system of dimers starting from the

mesogen–mesogen pair potential and distinguishing*Corresponding author. Email: vanakara@upatras.gr

Liquid Crystals, Vol. 32, No. 11–12, November–December 2005, 1397–1407

Liquid Crystals
ISSN 0267-8292 print/ISSN 1366-5855 online # 2005 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/02678290500256312



inter- from intra-dimer pairs, the latter bearing explicitly

the constraints dictated by the conformations of the

spacer. We then introduce a variational field and apply

a pair-wise decoupling approximation to obtain the free

energy. The functional minimization of the latter

determines the variational field. The general procedure

is outlined in § 2 of this paper and is then applied to the
formulation of the free energy for the nematic–isotropic

phase transition. This statistical mechanics framework

is then used in § 3, together with standard forms of the

molecular interactions (Gay–Berne potential for the

mesogenic cores and Ryckaert–Bellemans torsional

potential [16, 17], or alternatively RIS conformation

statistics [18] for the spacer), to carry out phase

transition calculations and to evaluate the temperature
dependence and spacer length dependence of measur-

able order parameters and pair correlation factors. The

significance of these results is discussed and the

conclusions are stated in § 4.

2. Molecular theory and statistical mechanics

approximations

We consider an ensemble of ND symmetric dimers

consisting of two identical rigid rod-like mesogenic

cores linked longitudinally at the ends of an alkyl

spacer, as shown in figure 1. Such dimers can be viewed
as being formed by the bonding of two ‘monomers’,

each monomer consisting of a mesogenic core and an

end chain of half the spacer length. The mesogenic cores

of the system (and the respective ‘monomers’) are

labelled by the indices i, j,..51, 2 … N. Since all the

monomers are paired into dimers N52ND, but the

formulation that follows could be readily extended to

mixtures of monomers and dimers, in which case
N.2ND.

The interactions among the monomers of the system

are assumed to be pair-wise additive, with the interac-

tion energy for a pair of monomers i, j denoted by u(i, j).

The form of u(i, j) is different for bonded pairs of

monomers (monomers belonging to the same dimer)

and non-bonded pairs (monomers belonging to differ-

ent dimers). For simplicity, inter-dimer core–spacer and

spacer–spacer interactions are completely ignored; in

other words, the spacers are assumed merely to provide

the conformational constraints on the relative positions

and orientations of the mesogenic cores that are

attached to their ends. In this case, the interaction

u(i, j) for a pair of non-bonded monomers reduces to

u(i, j)5un(i, j), where un represents the interaction

energy between two non-bonded mesogenic cores and

depends on the relative orientation vij of the molecular

frames attached to each of these cores and on the

relative position rij of the origins of these frames, i.e.

un(i, j)5un(rij, vij). For a pair of bonded monomers we

set u(i, j)5ub(i, j) where ub consists of the non-bonded

core–core interaction and an additional term usp

associated with the conformational energy of the spacer.

The relative positions and orientations of the pair of

spacer-bonded mesogenic cores i, j, as well as the

conformational energy of the spacer, are fully deter-

mined given the conformational state of the spacer. The

latter is specified by a set of conformational variables

nij. Accordingly, the bonded pair potential ub is a func-

tion of the conformational variables of the spacer:

ub i, jð Þ~ub nij

� �
~un ri, j nij

� �
, vi, j nij

� �� �
zusp nij

� �
: ð1Þ

The pair potential u(i, j) enters the expression for the

configurational partition function Q of the ensemble of

dimers in volume V at temperature T through the

weight factor

G i, jð Þ:exp {u i, jð Þ=kT½ �, ð2Þ

which, depending on whether u(i, j)5ub(i, j) or un(i, j),

will be denoted by Gb or Gn, respectively, for a bonded

or non-bonded pair of mesogenic cores. The exact

expression for the partition function is then

Q~

ð
d if gP

i=j
G i, jð Þ ð3Þ

Figure 1. Schematic representation of a symmetric even dimer with six methylene sites. The mesogenic groups are assumed
perfectly uniaxial carrying a central longitudinal point dipole m.
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with {i} denoting collectively the set of variables

describing the configurational degrees of freedom of the

system. Such a set of variables can be chosen to consist,

for example, of the position and orientation of one of the

two cores of each dimer relative to the macroscopic frame

X, Y, Z and of the conformational variables nij of the

spacer connecting the two cores of each dimer.

Equations (2) and (3), together with the correspond-

ing expression for the configurational part of the free

energy of the system

F~{kT ln Q ð4Þ

and the general expression for the ensemble average

<A> of any physical quantity A{i} of the system,

SAT~ 1=Qð Þ
ð

d if gA if gP
i=j

G i, jð Þ ð5Þ

define the exact equilibrium statistical mechanics of the

system. Clearly, however, these equations are only of

formal significance. Approximations are necessary in

order to actually evaluate the free energy and the

relevant ensemble averages starting from the

molecular interactions. When introducing such approx-

imations it is important not to neglect or oversimplify

the orientational correlations among pairs of mesogenic

cores since these correlations are a crucial differentiat-

ing factor between dimer and monomer behaviour.

An approximation scheme that meets these require-

ments is based on the variational pair-wise decoupling

of the partition function (also known as the variational

two-particle cluster approximation or as the Bethe

approximation [19]). Briefly, this entails introducing

a variational field w(i) and defining
~G i, jð Þ:G i, jð Þexp w ið Þzw jð Þ½ �, in terms of which the

exact partition function of equation (3) can be rewritten

in the equivalent form,

Q~fN
vP

i=j

~G i, jð Þ >0: ð6Þ

Here f:
Ð

d ið Þexp { N{1ð Þw ið Þ½ �, and the angular

brackets with the subscript 0 denote averaging with

respect to the variational field distribution function

P
N

i~1
r ið Þ, where the single-core probability distribution

r(i) is related to the variational field according to

r ið Þ~exp { N{1ð Þw ið Þ½ �=f: ð7Þ

The approximation consists of replacing the average in

the rhs of equation (6) by a product of pair averages,

namely

SP
i=j

~G i, jð ÞT0&P
i=j

S ~G i, jð ÞT0: ð8Þ

In this approximation the free energy of equation (4),

taking into account that there are ND5N/2 bonded

pairs of mesogenic cores and N(ND21) non-bonded

pairs, reduces to the expression

F&{kTN ln fz
1

2

� �
lnS ~GbT0z

N

2
{1

� �
lnS ~GnT0

� �
:ð9Þ

The approximation is completed by determining the

variational field w(i) through the functional minimiza-

tion of the above approximate expression of the free

energy. The ensemble averages of quantities pertaining

to a pair of monomers are evaluated by applying the

pair-wise decoupling approximation of equation (8) to

the expression in the rhs of equation (5). Thus, for any

quantity Ab(i, j) pertaining to a bonded pair of

monomers, we have

SAbT&SAbGbT0=SGbT0 ð10Þ

and a similar expression for any non-bonded pair

quantity An(i, j), by replacing Gb with Gn.

To proceed from the above general expressions of the

decoupling approximation to expressions referring to

the nematic phase, it is necessary first to specify the

relevant variables of the variational field according to

the symmetries of the phase. For rigid cores of arbitrary

shape the variational probability distribution r(i) for a

single core depends only on the orientation vi of the

core relative to the macroscopic phase-fixed frame.

Denoting the orientational distribution by f(vi) we

have, as a result of the positional uniformity of the

nematic phase,

r ið Þ~f við Þ=V ð11Þ

where V denotes the sample volume. Accordingly, the

variational field w(i) depends only on orientational

variable vi of the core, i.e., w(i)5w(vi).

Next, certain general considerations on the form of

Gn, Gb must be taken into account. Thus, assuming

that the range of the non-bonded core potential un is of

the order of the molecular dimensions, we may write

for Gn

Gn rij, vij

� �
~1{D rij , vij

� �
ð12Þ

where the quantity D(rij, vij) is negligible at intermole-

cular distances |rij| exceeding the range of the interaction

and therefore has significant values only within a region

of |rij| that is of the order of the molecular dimensions.

Then, according to equation (9), the relevant contribu-

tion of Gn to the free energy of the nematic phase comes

from the orientation-dependent quantity

�DD vij

� �
~ 1

	
a3

� � ð
D rij , vij

� �
drij ð13Þ
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where a denotes the effective average range of the non-

bonded monomer–monomer pair potential and is

introduced in equation (13) in order to render the

orientational function �DD dimensionless. Turning now

to the bonded (intra-dimer) terms Gb we note that,

contrary to Gn, they vanish when the core–core

separation exceeds the length of the fully extended

spacer. In the nematic phase, only the conformationally

averaged dependence of Gn on the relative orientations

of the mesogenic cores is of relevance. This will be

denoted by �GGb vij

� �
and is obtained by the following

formal transformation of the conformational distribu-

tion into an orientation distribution:

�GGb vij

� �
~

ð
dnijGb nij

� �
d vij{v nij

� �� �
ð14Þ

where v(nij) stands for the relative orientation of the

mesogenic cores when the dimer is in the conformation

nij and d is the Dirac function.

On carrying out the functional minimization of the

free energy with respect to the variational field w(vi) we

obtain the following expressions for the single core

distribution and for the free energy in the nematic

phase:

f vð Þ~exp {j vð Þ½ �=f, ð15Þ

and

F=NkT&{ln f{ 1=2ð ÞlnS�GGbT0z g=2ð ÞS�DDT0 ð16Þ

where

f:
ð

d v exp {j vð Þ½ � ð17Þ

S�GGbT0~

ð
d vi f við Þ

ð
d vj f vj

� �
�GGb vij

� �
ð18Þ

S�DDT0~

ð
d vi f við Þ

ð
d vj f vj

� �
�DD vij

� �
ð19Þ

and g5Na3/V denotes the effective packing fraction of

the monomers. The ‘potential of mean torque’, j(v) in

equation (15) is defined through the self-consistency

condition:

j við Þ~g

ð
d vj f vj

� �
�DD vij

� �
{S�DDT0

� �

z1{

ð
d vj f vj

� �
�GGb vij

� �	
S�GGbT0:

ð20Þ

The inclusion of the orientational independent terms in

the rhs of this equation is merely a matter of

convenience since it leads to SjT0:
Ð

d vf vð Þj vð Þ~0

and moreover it makes j(v)50 in the isotropic phase.

Calculations based on this molecular theory start

with the bonded and non-bonded interaction potentials

ub, and un from which the orientational coupling

functions �DD and �GGb are evaluated according to

equations (13) and (14), and are then used to determine

self-consistently the potential of mean torque from

equations (15) and (20). Once j(v) is determined, the

free energy of equation (16) can be obtained. The

ensemble average of any single-monomer quantity can

then be evaluated using the orientational distribution

f(v) of equation (15). Regarding pair ensemble

averages, of particular interest are the orientational

averages <cos hij> and <cos hi cos hj>, with hij denoting

the angle formed by the long axes of the mesogenic

cores of monomers i and j, and hi, hj denoting the angle

of each such axis with the director of the phase. For a

bonded pair of monomers <cos hij> is given, according

to equation (10), by the expression

Scos hij

� �
b
T&
ð

d vi d vj f við Þf vj

� �
cos hij

� �
b

�GGb vij

� �	
S�GGbT0:
ð21Þ

For a non-bonded pair, the respective expression is

Scos hij

� �
n
T&

{ g=Nð Þ
ð

d vi d vj f við Þf vj

� �
cos hij

� �
n
�DD vij

� �ð22Þ

where account has been taken of <Gn>051 and of the

apolarity of the nematic phase, as a result of whichÐ
d vj f vj

� �
cos hij

� �
n
~0. Analogous equations hold for

the ensemble averages <cos hi cos hj> of bonded and

non-bonded pairs.

To focus on how the spacer influences the nematic

behaviour of the dimer relative to that of the monomer

in the absence of other structural complexities or

asymmetries, we shall restrict our attention to uniaxial

nematic phases and consider alkyl spacers connecting

perfectly uniaxial mesogenic cores bearing permanent

dipole moments that are directed along the symmetry

axis (‘long’ axis) of the cores. We shall also assume that

the core symmetry axis is collinear with the bond at the

core–spacer linkage. In this case, the orientational

couplings �DD and �GGb for a pair of cores i, j are functions

of the angle hij between the core long axes while the

potential of mean torque is a function of the angle h
between the symmetry axis of the mesogenic core and

the nematic director. It is then straightforward to

formulate the free energy in terms of order parameters

by expanding the orientational couplings �DD hij

� �
, �GGb hij

� �

and the potential of mean torque j(h) in series of

ð21Þ

ð22Þ
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Legendre polynomials Pl(cos h). The ensemble averages

of these polynomials define the mesogenic core orienta-

tional order parameters of tensor rank l, namely

SPlT0:
ð

f hð ÞPl coshð Þd cosh: ð23Þ

The details of this expansion are given in the appendix.

In general, the Legendre series representation intro-

duces an infinite number of expansion coefficients as

well as order parameters of unlimitedly high ranks.

However, the usefulness of such representation in actual

calculations lies in the possibility of obtaining fairly

accurate results by truncating the expansion to some

computationally reasonable rank. The truncation is

justified by the rapidly decreasing magnitude of the

orientational order parameters with increasing rank in

all common, low molar mass, nematic fluids and by the

possibility of adequately representing the dominant

intermolecular interactions by means of a fairly small

number of low rank expansions terms. Even so, the

actual calculations are not particularly facilitated by

using the Legendre series formulation and in fact,

the results presented in the next section are obtained

by solving the self-consistency conditions of equa-

tion (20) for the full orientational couplings, rather than

for their low rank representatives in the Legendre series

expansion. These results are then used to assess the

accuracy of the results obtained with the truncated

series.

Finally, it should be noted that the derivation of the

free energy within the variational pair-wise decoupling

approximation includes the description of the monomer

system as a limiting case. Indeed, on removing the

connected pair interactions (by setting Gb50) from

equations (16) and (20), one obtains the free energy and

potential of mean torque for the monomer system at

effective packing fraction g.

3. Calculations with model interactions

As is well known, the use of simple interaction

potentials is rarely adequate for a quantitative descrip-

tion of mesophases on the molecular scale; moreover it

is in no way established that a quantitative description

can be achieved by means of exclusively pair-wise

additive interactions [20, 21] irrespective of their

degree of complexity. With that in mind, and given

the pair-wise decoupling involved in the free energy and

the ensemble averages, the scope of the present

calculation is simply to rationalize the nematic beha-

viour of the dimers in relation to that of the monomer

systems within the context of a simple molecular

theory that could be successful in predicting qualitative

trends.

In that context we have used the potential previously

employed in the molecular simulations of dimers by

Wilson [16]. Thus, the dimer is treated as a collection of

anisotropic dipolar Gay–Berne segments, correspond-

ing to the mesogenic cores, and spherical Lennard–

Jones sites, corresponding to the methylene groups of

the alkyl spacer.

The non-bonded potential is therefore written as

un i, jð Þ~UGB
ij zU

Dipolar
ij ð24Þ

with UGB
ij denoting the Gay–Berne potential, parame-

terized as in [16], and the dipole–dipole interaction

given by

U
Dipolar
ij ~m2

coshij{3 rij
:mi

� �
rij
:mj


 �

r3
ij

ð25Þ

where mi is the direction of the mesogenic dipole of

strength m and rij is the direction of the vector that

connects the pair of dipoles i, j. The numerical value

m52 Debye has been used for the dipole moment

magnitude in the present calculations.

The corresponding orientational coupling �DD hij

� �
is

plotted in figure 2 (a), from which it is apparent that its

angular dependence is essentially conveyed by a

P2(cos hij) behaviour, with some small asymmetry,

P1(cos hij) contribution, due to the attachment of

permanent longitudinal electric dipole moments on the

mesogenic cores.

To model the flexible spacer we have assumed

constant bond lengths, LC–C51.53 Å and bond angles,

hCCC5112u. With these constraints, the conformations

of the dimer are specified completely by the set of the

dihedral angles, {Qi} and we have for the bonded-pair

potential

ub i, jð Þ:ub Qf g~UGB
ij zU

Dipolar
ij zUSpacer Qf g ð26Þ

where for UGB
ij and U

Dipolar
ij we use the same forms as for

the non-bonded interactions, and the conformational

energy of the spacer, USpacer{Q}5Udiherdal{Q}+ULJ{Q}

includes the torsional potential of the C–C bonds,

Udiherdal{Q}, modelled as a Ryckaert–Bellemans expan-

sion [17] and ULJ{Q} corresponds to site–site

Lennard–Jones interactions between non-bonded sites

of the spacer with the same parameterization as in [16].

The respective orientational coupling �GGb hij

� �
is

plotted in figure 2 (b), for an odd- and an even-carbon

number spacer at the same temperature. Noteworthy is

the marked qualitative difference in the angular

dependence for these two spacers and also that, in both

cases, this dependence is essentially conveyed by a

P3(cos hij), albeit with opposite sign for odd and even
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spacers. The same function, �GGb hij

� �
, was evaluated

using the 3-state RIS scheme [9], instead of the

semiatomistic model described above, to generate the

spacer conformations. The results of these calculations

are shown by the bar graph of figure 2 (c). For the RIS

parameterization we have used constant bond lengths,

LC–C51.53 Å and bond angles, hCCC5112u and energy

parameters Etg/kT51, Eg+g+~6Etg, torsion angle

minima at 112.5u and rejection of all self-intersecting

conformations. For the detection of the latter con-

formations, the methyl groups of the spacer are

represented by hard spheres of diameter 3.5 Å and

the mesogenic cores by hard cylinders with length

18 Å and width 6.6 Å, in accord with the dimensions

of a cyanobiphenyl core. The calculations were

repeated once more, this time allowing for a uniform

distribution of the torsion angle within a range of ¡5u
centred at the RIS minima [18]. The respective

results are shown on the solid-line plot of figure 2 (c).

It is clear from figures 2 (b) and 2 (c) that the

dominance of the P3(cos hij) on the behaviour of the

orientational coupling �GGb hij

� �
persists in all three

different model calculations, indicating that this fea-

ture of the orientational coupling of the bonded meso-

gens is an intrinsic property of these dimers and not the

circumstantial outcome of a particular modelling.

Using the orientational coupling functions obtained

by the semiatomistic modelling of the dimers, we have

calculated the nematic–isotropic transition tempera-

tures, expressed in units of the Gay–Berne interaction

parameter eGB
0

	
k [16], as a function of spacer length,

figure 3 (a), and the respective values of the core order

parameter <P2>0, at the transition, figure 3 (b). For

these calculations we have assumed constant packing

fraction of the mesogenic cores for the monomer system

and for all the dimers irrespective of their spacer length.

This is a crude approximation and the results should be

considered accordingly, particularly in view of the

sensitivity of the phase transition calculations to

variations of the packing fraction g. It is apparent from

figures 3 (a) and 3 (b) that the strong odd–even effect for

the short dimers is attenuated for the longer members

where, due to the high number of accessible conforma-

tions, the orientational coupling between the bonded

mesogen pairs weakens.

The dipolar correlation factors are quantities of

particular significance to the static and low frequency

dielectric properties of both the monomer and the

dimeric systems. In particular, the ensemble average

that determines the orientational polarization part of

the dielectric permittivity is the total dipole tensor

<MAMB>, where A, B5X, Y, Z are component indices

referring to a macroscopic axis frame X, Y, Z and MA

Figure 2. Plots of the orientation dependence of the interac-
tions. (a) Orientational coupling �DD hij

� �
for non-bonded

mesogenic cores. (b) Normalized orientational coupling,
�GGb hij

� �
between mesogenic units belonging to the same dimer.

Results are shown for two spacers of lengths 11 (solid line) and
12 (dashed line) methylene groups. (c) Same as (b) for a dimer
with spacer of 11 methylene units. The bar-diagram results are
obtained for the alkyl spacer modelled according to the 3-state
RIS approximation. The continuous line corresponds to the
same RIS parametrization but allowing uniform distribution
of the torsion angles within a range of ¡5u centered at the RIS
minima.
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denotes the A component of the total dipole moment of

the system, MA~
PN

i~1

mA ið Þ.

Taking into account that the dipolar moments are

paired into N/2 dimers we have

SMAMBT~NSmAmBTzNS mAm0B
� �

bonded
T

zN N{2ð ÞS mAm0B
� �

non�bonded
T:

Moreover, in a uniaxial phase, with Z chosen to be

the symmetry axis (director) of the phase, only the

diagonal components (A5B) of the dipole tensor

are non-vanishing. In the present case of purely

longitudinal dipoles, these components can be

evaluated according to the following relationships:

SmZmZT~m2Scos2 hT

SmX mX T~SmY mY T~m2 1{Scos2 hT
� �	

2

SmZmZTbonded~m2S cosh cosh0ð ÞbT

SmX m0X Tbonded~SmY m0Y Tbonded

~m2 Scos hmm0
� �

b
T{S cosh cosh0ð ÞbT


 �.
2

with analogous expressions holding for the non-bonded

dipole pairs and with hmm9 denoting the angle between

the directions of dipoles m and m9. Thus in the present,

fully uniaxial case, all the dipolar correlation factors

are conveyed by the pair averages <cos hij> and

<cos hi cos hj>. These can be evaluated according to

equations (21) and (22). For the monomeric system

there is just one pair average, pertaining to non-bonded

mesogenic cores. The temperature dependence of this

average is shown in figure 4 together with the orienta-

tional order parameter <P2>. It is apparent from the

plots in figure 4 for the monomeric system that there is

a tendency for antiparallel dipolar association

(<cos hij>,0, <cos hi cos hj>,0) of the molecular

dipoles in both the nematic and the isotropic phase.

However, in the isotropic phase the dipolar associa-

tions are rather weak and almost insensitive to

temperature changes. At the N–I transition temperature

the dipolar factors jump to much higher absolute

values which increase almost linearly on lowering the

temperature.

For dimers there are two additional pair averages,

associated with the bonded pairs. The temperature

dependence of these averages, together with the

respective averages of non-bonded pairs are shown in

figures 5 (a–d) for four different dimers with spacer

lengths ranging from seven up to ten carbon atoms. It is

apparent that the temperature dependence of the

orientational correlation factors of bonded mesogenic

pairs differ appreciably for spacers of opposite parity,

while the correlation factors of non-bonded pairs

exhibit the same temperature dependence and barely

differ from their counterparts of the monomeric system.

The negative values for the correlation factors of

bonded mesogen pairs in the nematic phase of even

dimers reflect a favouring of linear dimer conformations

that bring the mesogenic dipoles antiparallel. This

tendency grows stronger on lowering the temperature.

The situation changes for odd dimers where the

corresponding averages near the transition temperature

are much lower but tending to positive values on

lowering the temperature. This reflects the favouring

of parallel dipolar association, indicating that the

Figure 3. Plots of the spacer length dependence of (a) the
nematic–isotropic phase transition temperatures TNI and (b)
orientational order parameter <P2>NI at the transition for
symmetric dimers. The continuous lines on the plots
indicate the transition temperature of the monomeric system
and the respective value of the order parameter at the
transition. All the results are obtained at the same value of
the packing fraction of the mesogenic units, g50.7, for
the monomer and the dimers irrespective of their spacer
length.
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Figure 4. Temperature dependence of dipole correlation factors <cos (hij)n>, <cos (hi)n cos (hj)n> and orientational order
parameter <P2> for the monomer system.

Figure 5. Temperature and spacer length dependence of dipole correlation factors <cos (hij)n(b)>, <cos (hi)n(b) cos (hj)n(b)> for
bonded and non-bonded mesogenic pairs of the dimer system.
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dimer tends towards U-shaped conformations. The

interplay between bonded and non-bonded correlation

factors, as well as the qualitative dependence of that

interplay on the spacer parity, can account for the

diverse trends observed in experimental dielectric

studies for the permittivity of nematic dimers [22–25]

and some of the marked differences from the behaviour

of the monomer compounds. Thus, for example, the

experimentally observed decrease of the parallel per-

mittivity component e// with decreasing temperature

(increasing orientational order) and, more notably, its

initial increase and subsequent decrease, are readily

accounted for by the competing tendencies in the

temperature dependence of the order parameters and

correlation factors of bonded and non-bonded pairs

shown in figures 4 and 5.

4. Discussion and conclusions

This is, to our knowledge, the first time that a molecular

theory of liquid crystal dimers starting from explicit

inter- and intra-molecular interactions has been pre-

sented. The application of the theory to the descrip-

tion of the nematic phase has successfully accounted

for the odd–even alternations at the phase transition

and for the parity and temperature dependence of

dipolar correlation factors of dimers, while singling

out the differentiating factors from the monomer

behaviour.

The statistical mechanics formulation of the theory is

not restricted in any way to the nematic phase and this

makes it possible to use it for the description of smectic

polymorphism in LC dimers. Previous molecular

theories [10–12] have also been successful in accounting

for some of the basic features of the nematic behaviour

of dimers. However, these theories, being based on

some form of effective interaction of the dimer molecule

with its nematic environment, introduced through a

phenomenological potential of mean torque, can simply

not be extended to smectic ordering. Further, these

phenomenological treatments are intrinsically limited to

tensor interactions of second rank, a limitation that in

view of the present results could be more severe than

initially expected, and moreover the mean-field nature

of these phenomenological theories can only give trivial

results for molecular pair correlations. In contrast, the

results presented here show that by properly accounting

for the orientational correlations between bonded and

non-bonded pairs of mesogenic units, a proper theore-

tical framework for rationalizing the dielectric proper-

ties of nematic dimers is obtained, while maintaining all

the successful features of phenomenological mean-field

treatments.
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Appendix

Here we provide an equivalent representation of the free

energy and the potential of mean torque of equa-

tions (16) and (20), respectively, in terms of Legendre

polynomials Pl(cos h) and the corresponding orienta-

tional order parameters <Pl>0 defined in equation (23).

The representation is based on the Legendre series

expansion of the orientational couplings,

�GGb hij

� �
~
X?

l~0

�GG
lð Þ

b Pl coshij

� �
ðA1Þ

�DD hij

� �
~
X?

l~0

�DD lð ÞPl coshij

� �
: ðA2Þ

The expansion coefficients �GG
lð Þ

b , �DD lð Þ, together with the

coefficients j(l) of the respective expansion of the

potential of mean torque,

j hð Þ~
X?

l~1

j 2lð ÞP2l coshð Þ ðA3Þ

can be used to write the nematic–isotropic free

energy difference in terms of the order parameters as

follows:

Fiso{Fnemð Þ=NkT

~ln
1

2

ð
exp {

X?

l~1

j 2lð ÞP2l coshð Þd cosh

" # !

z
1

2
ln 1z

X?

l~1

�GG
2lð Þ

b

�GG
0ð Þ

b

SP2lT2
0

 !

{
g

2

X?

l~1

�DD 2lð ÞSP2lT2
0:

ðA4Þ

According to the self-consistency equation (20), the

potential of mean torque j(h) is related to the

coefficients �GG
lð Þ

b , �DD lð Þ and the order parameters <Pl>0

as follows:

j hð Þ~

X?

l~1

P2l coshð Þ{SP2lT0ð ÞSP2lT0 g�DD 2lð Þ{
�GG

2lð Þ
b

P?

l0~0

�GG
2l0ð Þ

b SP2l0T2
0

2

664

3

775:

Due to the assumed apolarity of the nematic phase, only

even rank expansion coefficients and order parameters

appear in the l-summations of the expressions for the

free energy and the potential of mean torque. It should

be noted, however, that the expansions of the orienta-

tional couplings in equations (A1) and (A2) do include

odd-ranked terms and in fact, the odd-rank contribu-

tions to the bonded coupling, particularly the l53

terms, seem to be quite significant according to the

results in figure 2 (b).

It is of some interest to consider the form of the free

energy and of the potential of mean torque in the limit

of very weak spacer-mediated orientational correlations

of the mesogenic cores, as it is the case with very flexible

or very long spacers. In this limit
�GG

2lð Þ
b

�GG
0ð Þ

b

����

����vv1 and the

expression for the free energy difference of

equation (A4) reduces to

Fiso{Fnemð Þ=NkT~

ln
1

2

ð
exp {

X?

l~1

j 2lð ÞP2l coshð Þd cosh

" # !

z
1

2

X?

l~1

l 2lð ÞSP2lT2
0,

ðA5Þ

where

l lð Þ~
�GG

2lð Þ
b

�GG
0ð Þ

b

{g�DD 2lð Þ: ðA6Þ

The even-rank expansion coefficients of the potential of

mean torque of equation (A5) are in this case given by

j 2lð Þ~{l 2lð ÞSP2lT0: ðA7Þ

It is apparent from equations (A5) and (A7) that, in the

limit of a ‘loose’ spacer, the dimers are formally

equivalent to a system of monomers interacting via an

effective pair potential whose Legendre series expansion

is determined by the coefficients l(l) of equation (A7).

These coefficients include both the direct core–core

interactions (�DD lð Þ terms) and the spacer-mediated inter-

actions (�GG
lð Þ

b terms).

On further assuming that the effective interaction is

such that the terms l(l) of rank l.2 can be ignored, the

resulting potential of mean torque and free energy

difference become formally identical to those of the

Maier–Saupe (MS) theory of nematics [26]. In this

sense, the free energy formulation of equation (A4),

when restricted to terms of rank l(2 is an extension of

the MS theory to nematic dimers. However, there are

two important points of difference between this

restricted form of the present theory of dimers and

the MS theory: (a) the coefficients l(l) are explicitly

related to the core–core potential, both direct and

through-spacer, according to equation (A6); and (b)

the mean-field character of the MS theory cannot

address orientational correlations between pairs of

mesogenic cores while the present extension can. In

addition, it should be kept in mind that, according to

ðA1Þ

ðA2Þ

ðA3Þ

ðA4Þ

ðA5Þ

ðA6Þ

ðA7Þ
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the results in figure 2, while the neglect of the

tensor coefficients �DD lð Þ with l.2 could be acceptable,

since normally these are considerably smaller than the

dominant �DD 2ð Þ term, the same is not true for the �GG
lð Þ

b

coefficients where rank l53 coefficients could be

more significant than those of rank l51, 2, even for

fairly long spacers. Thus an MS-type of treatment of

nematic dimers could not be expected to adequately

account for some of the essential features of their

nematic ordering.
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