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We present tractable molecular theory descriptions of liquid crystalline dendrimers based

on clearly defined approximations and in terms of the dominant interactions underlying the

self-organisation of these large and complex supermolecular entities. We formulate the

configurational partition function for dendrimers, taking explicit account of their

conformations and segmental interactions. Two approximate schemes are presented: the

first is based on the effective interactions of the dendrimers as a whole while the second

scheme is based on the interactions among the mesogenic units contained in the dendrimers.

Results of lattice calculations for phase transitions in the context of the first scheme are

presented and they show that the minimal inclusion of shape anisotropy and of sub-molecular

partitioning into chemically distinct parts is sufficient to reproduce the variety of phases

and phase sequences observed experimentally and provides insights into the conformational

aspect of these transitions. In the second scheme, the description of the dendromesogenic

system reduces to that of an ensemble of mesogenic dimers. This scheme can be readily

extended to the description liquid crystalline oligomers and polymers consisting of mesogenic

units connected by flexible spacers in various architectures. It thus provides a unified

approach for treating mesomorphic phase transitions of supermolecular and macromolecular

systems that can be built by connecting the same submolecular units in topologically

different ways.

I. Introduction

The study of liquid crystalline phases formed by various types

of dendritic systems1–13 differing in their architecture, in the

chemical structure of the branches, the functionalisation of

the surface etc., has led to the identification of several possible

mechanisms of supermolecular self organisation.14 These

include:

(a) Micro-segregation, generated by the partitioning of

the dendritic structure into chemically distinct regions. This

mechanism is believed to underlie the liquid crystalline self-

organisation of dendrimers whose overall shape and the shapes

of their subunits lack orientability.1

(b) Mutual alignment of mesogenic units. This mechanism

is dominant in radial or globular dendrimers containing

mesogenic units. The latter could be attached to the

external periphery of the dendritic scaffold2–9 or be part of

the scaffold as well.10 The orientational order results primarily

from the anisotropic interactions among mesogenic units

belonging to different dendrimers (inter-dendritic) or to the

same dendrimer (intra-dendritic). The intra-dendritic interac-

tions could induce an asymmetry to the overall shape of the

dendrimer that, in turn, enhances the orientational order. On

the other hand, in systems with a flexible non-mesogenic

dendritic scaffold and peripherally attached mesogenic units,

the micro-segregation mechanism, stemming from the chemi-

cal distinction between the flexible scaffold and the mesogenic

periphery, is superimposed to the mesogenic interactions and

promotes partial positional order in the form of layering or

column formation.2–9

(c) Self-assembly of dendritic units to form supramolecular

structures that self-organise into liquid crystalline phases.11

The structure and interactions of the dendra, which need not

contain any intrinsically mesogenic segments, control the

shape of the supramolecular entities and thereby the symmetry

of the ordered phases.

(d) Direct self-organisation of relatively rigid supermole-

cular structures, such as worm-like polymers or rigid rods12,13

formed by the bonding of dendritic units. The shape of the

superstructure is determined by the way in which the dendritic

units are bonded while the overall rigidity can be controlled by

the generation of the dendra.

A basic issue in formulating any molecular theory of

dendritic mesomorphism is the extent of detail to which the

structure, the conformations and the interactions of the

dendritic units are to be described. The molecular size of

these systems and the usually enormous number of conforma-

tional states they can access precludes a fully atomistic

description and one has therefore to identify and retain only

the elements that are of primary relevance to their meso-

morphic behaviour. The complexity of the problem stems

from the presence of a broad hierarchy of interactions:

dendrimers of a given generation have several topologically

and chemically different segments and this gives rise to
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many combinations of intra- and inter-dendrimer segmental

interactions. Moreover, the flexibility of these supermolecular

structures is usually so extensive that even the treatment of

the conformation statistics of a single dendrimer becomes

extremely complex.15–21 Here we consider two simplified

views of this problem. One view is to assign distinct roles

to intra- and inter-dendrimer interactions by treating the

dendrimers as deformable objects22–24 that can exist in a

manageable number of conformational states predetermined

by the intra-dendrimer interactions. These objects are then

assumed to interact with each other as a whole in a way

that is dictated entirely by the inter-dendrimer segmental

interactions. The other view is to consider directly the

interactions among the dendritic segments in a pair-wise

manner (i.e. ignoring 3-segment correlations or higher)

and impose on the intra-dendritic pairs the configurational

constraints dictated by their connectivity within the

same dendrimer. In other words, this ‘‘segmental’’ approach

replaces the dendritic connectivity by a set of pair-wise

configurational constraints on the segments of the same

dendrimer.

The purpose of this work is not to reach a quantitative

description of dendritic liquid crystals starting from their

detailed molecular structure but rather to seek insights into

the experimental trends exhibited by these systems in terms of

their dominant molecular characteristics. The two approaches

to be presented here are based on different assumptions

and approximations and they are mutually supplementing.

Their applicability extends to dendromesogenic systems

described under mechanisms (a) and (b) in the beginning of

this section. The self-assembly mechanism described under (c)

is not considered in this work neither is mechanism (d), which

can be treated, at some level of coarse graining, by the

molecular theory methods developed for rigid rod or semi-

rigid worm-like polymers.25

The paper is organized as follows. The exact statistical

mechanics of the dendrimer ensemble is formulated in section

II and serve as the basis for specifying the subsequent

approximations entailed by each of the two approaches. The

interconverting shape approach is developed in section III and

is illustrated by applying it to a simple model system of

dendrimers exhibiting interconversions between calamitic and

discotic shapes. The segmental pair-interaction approach is

presented in section IV and its application is illustrated for a

model dendrimer consisting of a flexible non-mesogenic

dendritic scaffold that is peripherally functionalised with

mesogenic units. The last part of this section deals with the

generalization of the segmental approach to linear liquid

crystalline oligomers and polymers. Finally, the conclusions

are presented in section V.

II. Formulation of the dendrimer ensemble free
energy

We consider an ensemble of ND identical dendrimers

occupying volume V at temperature T. The individual

dendrimers are labeled by the indices I, J… 5 1,2,3…ND.

We denote the position of the Ith dendrimer by RI, its

orientation by VI and the set of variables specifying its

conformational state by nI. The energy of the dendrimer at

that state is E(nI). Let the interaction between two such

dendrimers be described by the pair potential UI,J 5

U(RI,J;VI,J;nI,nJ), with RI,J, VI,J denoting respectively the

position and orientation of dendrimer J relative to I. The

conformational energy E(nI) is understood to originate from

the interactions among the segments that form dendrimer I.

Labeling these segments by the index iI, jI… 5 1,2,3…Ns,

where Ns is the total number of the segments into which

the dendrimer is subdivided, and assuming that the intra-

dendrimer interactions can be represented by a pair-wise

superposition of potentials u(iI, jI) among its constituent

segments we have

E(vI )~
X

iI ,jI

u(iI ,jI ) (1)

Similarly, the dendrimer–dendrimer interaction potential UI,J

is written as a superposition of potentials u(iI, jJ) among all the

inter-dendrimer pairs of segments iI, jJ,

UI ,J~
X

iI ,jJ

u(iI ,jJ ) (2)

The equilibrium configurational partition function for this

ensemble of dendrimers is then

Q~

ð
dfIgP

ND

I~1
e{E�(vI ) P

ND

J~Iz1
e{U�

I ,J (3)

with {I} denoting collectively the complete set of configura-

tional variables {RI;VI;nI} of the ND dendrimer ensemble,

E*(nI) ; E(nI)/kBT and U�I ;J ; UI,J/kBT.

The partition function of eqn. (3) can be put in an

alternative form such that the purely conformational single-

dendrimer contribution, denoted by qD, is factored out of the

part associated with the inter-dendrimer interactions and

denoted by Q9, i.e.

Q 5 (qD)NDQ9 (4)

where the single dendrimer partition function is defined by

qD:
Ð

dvI e{E�(vI ) (5)

while the contribution Q9 is a conformation-weighted con-

figurational average of the inter-dendrimer interactions,

given by

Q0~

ð
dfIgP

ND

I~1
P0(vI ) P

ND

J~Iz1
e{U�

I ,J (6)

where

P0(nI) ; e2E*(nI)/qD (7)

is defined as the intrinsic probability for the dendrimer I to be

found in conformation nI in the absence of any interactions

with the other dendrimers of the ensemble.

The expression of the partition function in eqn. (4) allows

the formal separation of the free energy of the dendrimer

ensemble,

F 5 2kBTlnQ (8)
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into a purely conformational, single-dendrimer part fD 5

2kTlnqD and an inter-dendritic part

F9 5 2kBTlnQ9 (9)

according to

F 5 NDfD + F9 (10)

The fD term involves, according to eqn. (5), integration over

the conformational states of a single dendrimer. This term

however drops out of the phase transition calculations, where

only free energy differences are considered, and therefore F9 is

the relevant free energy part for these calculations.

Eqn. (3) and the related expressions in eqn. (4)–(10) define

the exact statistical mechanics of the dendrimer ensemble,

within the pair-wise additive assumption of the interactions.

This assumption already constitutes an approximation on the

molecular interactions. For example, it precludes the explicit

treatment of molecular polarisability, whose role in liquid

crystalline self-organization is not generally insignificant.

Within the pair-wise additive limitation, the effects of such

many-body interactions can at best be included indirectly,

through effective pair potentials. In any case, eqn. (3) is only of

formal significance since the integration over the configura-

tional phase space {I} cannot be carried out in closed form for

any physically relevant form of the interactions. However, this

equation and its equivalent forms are useful as a starting point

for the systematic development of approximations. Two schemes

of such approximations are presented in sections III and IV and

are illustrated by applications to specific molecular models.

III. Interconverting shape approach

If we assume that the conformational states of the dendrimer

are discrete, i.e. that the conformational variable nI assumes

discrete values, then the formal integration in eqn. (3) will

entail for each dendrimer in the system a summation over all

conformations,
P
nI

, and an integration,
Ð

d$I , over its position

and orientation variables denoted collectively by aI 5 (RI;VI).

Suppose that the conformational states can be grouped into

sets, with the states in each set exhibiting identical dendrimer–

dendrimer interaction UI,J. For example, in the special case

where these interactions are assumed to be hard body

repulsions, the grouping would be such that all the members

of a set exhibit identical shapes for the dendrimer.23 Thus, for

brevity we will refer to these sets of conformations as ‘‘shapes’’,

although the formulation is applicable to soft potentials as

well. The different shapes of dendrimer I are denoted by SI and

the distinct conformations associated with the same shape SI

are denoted collectively by n(SI). Then the conformational sum

involving dendrimer I in eqn. (6) can be carried out first over

all the conformations belonging to a given shape and then over

all the different shapes, i.e.

X

vI

P0(vI )e{U�
I ,J ~

X

SI

X

v(SI )

P0(vI )

" #
e{U�

I ,J ~

X

SI

P0
SI

GSI ,SJ
($I ,J )

(11)

where the intrinsic probability P0
SI I of the shape SI is given by

the sum of the intrinsic probabilities of all the conformations

that correspond to that shape, i.e.

P0
SI
:
X

v(SI )

P0(vI ) (12)

and

GSI,SJ
(aI,J) ; e2U�I ;J (13)

describes the interactions between any conformation of shape

SI with any conformation of shape SJ. Here aI,J denotes the

relative positional and orientational variables RI,J, VI,J of the

dendrimer pair I, J.

With this grouping, eqn. (6) can be put in the equivalent

form

Q0~
X

fSIg

ð
df$Ig P

ND

I~1
P0

SI
P
ND

J~Iz1
GSI ,SJ

($I ,J ) (14)

The configurational free energy of the system, eqn. (9), is

approximated according to the variational cluster method26 by

introducing a variational weight function fS(a) for each set S

of conformations and retaining up to two-particle terms in the

cumulant expansion. This leads to the following approximate

expression for the free energy:

{F 0=NDkBT& ln �ffz
1

2
(ND{1) lnSGT (15)

where �ff~
P
S

P0
SfS, with fS~(1=8p2V )

Ð
d$fS($) and the

angular brackets denote averaging with respect to the probability

distribution

rS(a) 5 P0
SfS(a)/8p2Vf̄ (16)

namely,

SGT:
X

SI ,SJ

ð
d$I d$J rSI

($I )rSJ
($J )GSI ,SJ

($I ,J ) (17)

The variational weight functions are determined self-

consistently from the conditions

fS($)~ exp
SGSI

($I )T{SGT
SGT

� �
(18)

with SGSI
($I )T~

P
SJ

Ð
d$JrSJ

($J )GSI ,SJ
($I ,J ).

The form of the dependence of the variational weight

function fS(a) on the positional and orientational variables

aI 5 (RI;VI) reflects the symmetry of the phase. In our study of

the mesomorphic behaviour of dendrimers we consider the

following fluid phases:

N isotropic phases, for which fS(a) is independent of position

and orientation, fS(a)|Iso 5 fS,

N nematic phases, for which fS(a) is independent of position,

fS(a)|Nem 5 fS(V),

N smectic phases, for which fS(a) is independent of the

positional coordinates X,Y in the plane of the smectic layers,

fS(a)|Sm 5 fS(Z;V), Z being the positional coordinate along

the layer normal,
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N columnar phases, for which fS(a) is independent of the

positional coordinate Z along the columnar axis, fS(a)|Col 5

fS(X,Y;V), where the coordinates X,Y define the plane normal

to the columnar axis of the phase.

For the interconverting shape approach22–24 to be usable in

practice it is necessary that the number of the relevant shapes

be not too large, so that a reasonable number of intrinsic

probabilities P0
S and interactions GSI,SJ

(aI,J) be required as

input to the calculation. These quantities can be furnished to

some coarse grained representation by considering first the

conformation statistics and segmental interactions of a single

dendrimer in isolation. Having accomplished this, the basic

computational step is then the solution of the self-consistency

equations, following which the probability distribution of

eqn. (16) and the corresponding free energy of eqn. (15) are

obtained. The pair distribution function in this approximation

is given by rSI,SJ

(2)(aI,aJ) 5 rSI
(aI)rSJ

(aJ)GSI,SJ
(aI,J)/<G>.

The important conformation sets, or shapes, to keep in

eqn. (16) are not necessarily the ones that have the highest

intrinsic probabilities P0
S for an isolated dendrimer but

rather the ones that have significant probabilities to occur in

the bulk phase of the interacting dendrimers. The probability

of finding, in the bulk phase, any conformational state of

shape S is given by PS 5 P0
SfS/f̄, from which it is seen that for

a shape to have significant probability in the bulk phase it is

necessary that, aside from its intrinsic probability P0
S, it should

interact with its environment favourably enough to acquire a

large value of its self-consistent weight function integral fS.

An example: lattice calculations for an interconverting rod–plate

model of dendromesogens

The interconverting shape formulation will be applied here to a

very primitive model: the dendrimer is assumed to exhibit just

two sets of conformations, i.e. two ‘‘shapes’’, a rod-like and a

disc-like, for which the shape indices S 5 r and S 5 d will be

used. In accordance with this crude molecular picture, the

interactions are modelled as purely repulsive, with their

strength being determined by the extent of overlap between

the molecular volumes. Molecular partitioning, and the

associated microsegregation of the self-organisation, is intro-

duced into the model by differentiating between the strength of

the repulsive interactions among different parts of the rod-like

or disc-like objects. In keeping with the simplicity of this

modelling, the calculations of the free energy and the self-

consistent weight functions of eqn. (15) and (18) are performed

on a cubic lattice. Thus, we assume that the molecules are

made up of cubic blocks and are constrained to translate and

rotate on a cubic lattice space. The lattice unit cell dimensions

are taken to coincide with the size of the molecular building

blocks. By restricting the molecules to move so that each of

their building blocks occupies a single unit cell of the lattice,

the computational effort is reduced considerably, compared

to a continuous sampling of the molecular positions and

orientations, without severely affecting the predictive aspects

of the model.

The same building blocks, in different configurations, are

used to construct both the rod and the disc shapes of the

dendrimers. The blocks of dendrimer I are enumerated by the

index bI. As shown in Fig. 1, two types of blocks are

introduced in order to differentiate between chemically distinct

parts of the dendrimer. The differentiation is between regions

with high density of mesogenic units (light grey blocks) and

regions occupied by the flexible chain segments forming the

dendritic scaffold (dark grey blocks).

The molecular interactions used for the present lattice

calculations are modeled in a pair-wise additive scheme such

that the potential between a pair of blocks belonging to

different dendrimers vanishes except when these blocks occupy

the same or adjacent lattice sites. Accordingly the interaction

potential between molecules I and J can be written as

UI ,J~
X

bI ,bJ

u
(0)
bI ,bJ

d(RbI ,bJ
)zu

(1)
bI ,bJ

d(jRbI ,bJ
j{1)

� �
(19)

where RbI,bJ
denotes the distance between blocks bI and bJ, and

ubI,bJ

(0) , ubI,bJ

(1) stand for the values of the potential for that pair of

blocks occupying respectively the same lattice site or adjacent

lattice sites. The summation runs over all the blocks of

molecules I and J.

To study how molecular partitioning influences the phase

behaviour of these systems we have considered two different

models of the block–block interactions. The first is a purely

hard-body model: two blocks, of any kind, are forbidden to

occupy the same lattice site and have otherwise no interaction.

Obviously, this model disregards any distinction between sub-

molecular parts. The second model is segment-differentiating,

using soft and hard repulsions where the following differences

are introduced between the flexible scaffold blocks and the

mesogenic blocks:

(i) a scaffold block cannot occupy the same lattice site with

another block, of any kind, has no interaction with adjacent

scaffold blocks and exerts a soft repulsion on any mesogenic

block occupying an adjacent site, and

(ii) a mesogenic block exerts soft repulsions, of different

intensity, on other mesogenic blocks occupying the same or

adjacent lattice sites.

Accordingly, the interaction terms in eqn. (19) for this

segment-differentiating model are as follows:

ubI,bJ

(0) 5 ‘ (hard body) if at least one of the blocks bI,bJ is a

scaffold lock.

Fig. 1 Schematic representation of the two dominant shapes (rod-

and disc-like) of a globular dendrimer model of the PAMAM type

peripherally functionalized with mesogenic units. Shown are also the

respective idealized block structures used in the lattice calculations.
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ubI,bJ

(0) has a finite positive value (soft repulsion), call it u, if

both bI,bJ are mesogenic locks.

ubI,bJ

(1) 5 0 (no interaction) if both bI,bJ are scaffold locks.

ubI,bJ

(1) has a finite positive value (soft repulsion), call it u9, if

one of bI,bJ is a scaffold block and the other is a mesogenic

block.

ubI,bJ

(1) has a finite positive value (soft repulsion), call it u0, if

both bI,bJ are mesogenic locks.

To avoid introducing several independent parameters for the

soft repulsion potentials we have used in our calculations a

single parameter by setting u9 5 u/2 and u0 5 u/4. The single

strength parameter u was then given a representative value by

setting u/kBT 5 0.1.

Having specified the intermolecular interactions, there is just

one more input parameter that is required in order proceed

with the calculation of the phase diagrams for the inter-

converting rod–disc model of the dendromesogens. This

parameter is the intrinsic probability for one of the two

shapes. We have chosen to describe the phase behaviour as a

function of the disc intrinsic probability P0
d . Finally, it should

be noted that the dimensions of the rod and disc shapes are

fixed according to their block composition shown in Fig. 1. In

particular, the two shapes and their respective submolecular

parts (mesogenic or scaffold) are of equal volumes since they

consist of the same number of blocks of either kind.

The essential step in the calculations22–24 consists in solving

the self-consistency conditions of eqn. (18). We have calculated

phase equilibrium, based on the free energy of eqn. (15), for

isotropic, nematic, orthogonal smectic and rectangular ortho-

gonal columnar phases. The calculation is initiated by giving a

specific value for the intrinsic probability of the disc-like

molecular shape P0
d. Then, the dimensionless pressure p* 5

pVmol/kBT (here p is the pressure and Vmol the molecular

volume) at which a phase transition occurs is located by

solving the coexistence conditions for the two phases. The

resulting phase diagrams for the two parameterizations of

the model interaction are presented in Fig. 2(a),(b). In both

cases the intrinsic probability of the disc-like molecular shape,

P0
d, is varied in the range from 0 (purely rod-like) to 1 (purely

disc-like).

Although the phase diagrams of Fig. 2(a),(b) contain all the

essential information for the phase stability of the system, it is

experimentally more relevant to introduce the temperature as

the thermodynamic variable instead of the intrinsic probability

of the molecular shapes. To do that we assume that the

intrinsic probabilities for the rod-like (disc-like) shapes may be

written as

P0
r(d)~

exp½{er(d)=kBT �
exp½{er=kBT �z exp½{ed=kBT � (20)

with er(d) representing effective free energies for the two shapes.

On further assuming that the free energy difference De ; er 2 ed

does not vary with temperature appreciably (although the

individual free energies er and ed may do so), we obtain for the

scaled reciprocal temperature (er 2 ed)/kBT 5 ln(P0
d/(1 2 P0

d)).

Based on this expression, the (p*, P0
d) phase diagram of

Fig. 2(a), (b) are readily transformed into the pressure–

inverse temperature phase diagrams shown in Fig. 3(a)–(d),

with scaled axes (pVmol/|De|) and (|De|/kBT) respectively.

As evident from the phase diagrams in Fig. 3(a),(b), when

the intermolecular interactions do not distinguish between

different parts of the molecules, as in the case of the purely

hard body repulsions, the ensuing phase diagrams show the

usual phase sequences obtained in hard-rod or hard-disc

molecular theories24,27 and simulations.28,29 In particular,

when the rod-like shape is intrinsically more probable than

the disc-like (er , ed), the system transforms on cooling from

the isotropic phase to a uniaxial nematic phase and from there

to a positionally ordered phase, Fig. 3(a). In the case of the

purely hard repulsive system the positionally ordered phase is

columnar, formed by rods that are free to slide side-by-side

along the columnar axis of the phase. A similar disappearance

of smectic phases in favour of the columnar self-organization

has been reported30,31 for highly oriented systems of hard

cylindrical objects. For relatively low pressures, the calamitic

nematic phase is suppressed and the only phase transition is

from the isotropic to the columnar phase at rather low

temperatures. On the other hand, when the disc-like shape is

the one with the larger intrinsic probability (ed , er), the phase

sequence, at all the pressures, goes, on cooling, from the

isotropic to a discotic nematic phase and then on to a

columnar phase, Fig. 3(b). Some of the phases, particularly the

columnar rod phase, and some of the phase sequences

described by these phase diagrams are not observed experi-

mentally for typical liquid crystalline dendrimers.2–9

The situation changes dramatically when the submolecular

partitioning is incorporated, even in the minimal and perhaps

Fig. 2 Calculated (p*, P0
d) phase diagrams (dimensionless pressure vs.

intrinsic probability of the disc-like shape) with the interconverting

rod–disc model of the dendromesogens for the two parameterizations

of the block–block interactions: (a) purely hard-body repulsions

between the blocks and (b) interactions differentiating between

mesogenic and scaffold blocks. Cartoons of the self-organisation

motifs are inserted for each phase on the diagrams. The number of

rods and discs included in each cartoon is intended to give a qualitative

indication of the relative populations of the two shapes.
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oversimplified way it is done in the present calculations.

Indeed, on introducing differentiating interactions between the

two species of sub-molecular blocks, the variety of phases and

of the possible phase sequences becomes richer, as is evident

from the diagrams in Fig. 3(c),(d). Thus, when the intrinsically

more abundant shape is the disc-like, Fig. 3(d), five phases of

different symmetries appear on the pressure vs. temperature

phase diagram: the isotropic, two uniaxial nematic phases (one

calamitic and one discotic denoted by Nr and Nd respectively),

the orthogonal smectic phase (rich in rod-like shapes) and the

columnar discotic phase (rich in disc-like shapes). At low

pressures the phase sequence is similar to that of the purely

repulsive system, i.e. isotropic/discotic nematic/columnar. At

moderate pressures, or, equivalently for lower free energy

difference of the two molecular shapes, the orthogonal smectic

phase is inserted between the discotic nematic phase and the

columnar phase. This phase transformation, from lamellar to

columnar, is rarely observed in common, low molar mass

liquid crystals and, in fact, the few known instances32 involve

some self-assembly of the entities that self-organise into

columns. There are, however, at least two cases of such

lamellar–columnar phase transitions reported in the literature.

Rueff et al.8 and Richardson et al.,5 in both of which the

underlying mechanism is related to the change in the dominant

conformation of the dendrimers, in accordance with the results

of the present calculations.

When er 2 ed % 1 but still with ed , er, corresponding to

nearly equal intrinsic probabilities of the rod-like and the disc-

like shapes, a phase sequence becomes possible whereby, on

cooling from the isotropic (see Fig. 3(d)), a discotic nematic

phase is obtained which, on further cooling, is transformed to

a rod (calamitic) nematic which in turn cools to an orthogonal

smectic phase. This result shows that the intrinsically more

abundant shape is not necessarily the dominant one in the

ordered bulk phase. A quantitative demonstration of this

observation is given in Fig. 4, where we have plotted the

calculated bulk probabilities Pr and Pd of the two shapes as

function of pressure, at scaled temperature (er 2 ed)/kBT 5 0.71.

Fig. 3 Calculated phase diagrams (pressure vs. reciprocal temperature) for the interconverting rod–disc model of the dendromesogens for the two

parameterizations of the block–block interactions: (a, b) purely hard-body repulsions between the blocks. In (a) the rod shape is taken with lower

intrinsic free energy (higher intrinsic probability) than the disc shape while in (b) the rod shape is taken to be the one with the higher free energy;

(c,d) the corresponding diagrams for the segment-differentiating parameterization, with (c) corresponding to higher intrinsic abundance of rod

shapes and (d) of disc shapes.

Fig. 4 Calculated bulk probability of the rod (Pr) and disc (Pd)

shapes, as a function of the scaled pressure, corresponding to the phase

sequence obtained from the diagram in Fig. 3(d) by fixing the value of

the scaled temperature at (er 2 ed)/kBT 5 0.71.
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The plots indicate that all the phase transitions are

accompanied by significant chances in the bulk probabilities

of the two shapes. Notably, the transition from smectic to

columnar is accompanied by a clear and abrupt inversion of

the shape populations.

From the results obtained with the segment-differentiating

model it can be seen that by employing just two basic shapes

and very simple forms for their interactions it is possible to

reproduce a rich variety of phase transitions and the associated

structural and conformational changes. Lattice calculations

using the interconverting shape model have also been

successfully applied to the description of systems showing a

richer structure of submolecular partitioning, such as fullerene

containing liquid crystalline dendrimers.33 In this sense, the

interconverting shape approach can provide a rationalization

of the mesomorphism exhibited by certain classes of dendro-

mesogens2–10 in terms of molecular features, such as the global

shape and the partitioning into chemically distinct submole-

cular regions, that can essentially be related directly to the

molecular structure. The one ingredient of this approach that

is generally more elaborate to deduce from the molecular

structure is the intrinsic probability distribution among the

dominant shapes. Such deduction would strictly require the

input from molecular mechanics calculations on a single

dendrimer in order to determine the total probability of the

molecular conformations that can be enclosed within a given

geometrical shape. However, there are instances where it

becomes apparent how one could chemically control the

intrinsic probabilities of the basic shapes. For example, it is

shown in the work of Rueff et al.8 that, by varying the

proportion of single to double end chains attached to the

mesogenic units of the same dendrimer, and thus modifying

the packing mode of these chains within the dendrimer, it is

possible to systematically shift the self-organisation trends

between rod-like and disc-like dominance. Within the context

of the interconverting shape model presented here, the change

in the proportion of single to double end chains provides one

way of chemically varying the relative intrinsic probabilities of

the disc and rod shapes.

By limiting the model calculations to just two shapes, a rod

and a disc, both of which possess an axis of full rotational

symmetry, it is not possible to describe biaxial or tilted phases.

This is, however, not an inherent difficulty of the interconvert-

ing shape approach. Shapes such cylinders of elliptical cross-

section, oblique cylinders, etc., can be straightforwardly

included among the interconverting shapes and indeed the

conformation structure and energetics of the PAMAM-type

dendromesogens allow for considerable intrinsic probabilities

of such global shapes. Similarly, the approach can accom-

modate polar and chiral shapes. The inclusion of asymmetric

shapes complicates somewhat the technical aspects of the

computational implementation of the model, starting with the

decomposition of the shapes into blocks. In the present

illustration of the model we have chosen, for the sake of

simplicity, to avoid such complexities by restricting it to just

two shapes of full rotational symmetry. This is done at the

expense of the richness of the calculated phase diagrams since

the occurrence of tilted phases, which are quite common

for PAMAM type dendromesogens,7,8 is forbidden by the

assumed uniaxial symmetry of the self-organising entities. For

this reason, a full comparison of the calculated phase diagrams

with experimental ones is not warranted at the present stage,

even on a qualitative level.

A basic limitation of the interconverting shape approach is

that it becomes inadequate for the description of phenomena

where the internal motions of the dendrimer are directly

involved. Thus, for example, the static dielectric properties

can be described by assigning to each shape a molecular

polarisability tensor and a molecular dipole moment (usually

vanishing by symmetry) and considering reorientations and

translations of the dendrimer as a whole. This constitutes, of

course, a severely oversimplified molecular picture of the

dielectric behaviour of the actual systems, except perhaps

for extreme cases of internally very dense dendrimers pre-

cluding any significant intra-dendrimer segmental rearrange-

ments.23 The picture can be improved by considering

distributed polarisabilities and dipole moments over the

dendrimer volume and by further allowing for some deforma-

tion modes of the basic shapes. This however makes the

approach more complex and requires a larger set of input

information to be furnished with the guidance of the atomistic

structure and conformational statistics of the single dendrimer.

Similarly, the description of the dynamic behaviour of the

dendrimers with this approach is meaningful only for time

scales pertaining to global motions of the dendrimer shapes

and of their basic deformation modes while it is clearly

inapplicable for time scales associated with intra-dendrimer

segmental rearrangements.34

IV. The constrained segment approach

Rather than viewing the entire dendrimer as the basic mole-

cular unit, this description focuses on the sub-dendritic

units that give rise to the mesomorphic behaviour of the

dendrimer ensemble. Denoting the segmental interaction

Boltzmann factors by G(iI,jJ) 5 exp(2u(iI,jJ)/kBT), we may

rewrite eqn. (3), taking into account eqn. (1) and (2),

as follows

Q~

ð
dfIg P

ND

I~1
P

iI=jI
G(iI , jI ) P

ND

J~Iz1
P

i0
I
, j0

J

G(i0I , j0J ) (21)

in which the interaction terms associated with intra-dendrimer

pairs of segments are explicitly separated from those of the

inter-dendrimer pairs. In a more compact notation, all the

segments in the ensemble are labeled by a single index

i, j… 5 1,2,3…N, without specific reference to the dendrimer

they belong to. Here N 5 NSND is the total number of

segments in the ensemble. The partition function expression

assumes then the form

Q~

ð
dfIgP

i=j
G(i, j) (22)

with the understanding that the different pairs i, j are not

necessarily equivalent.

The variational cluster method26 can then be applied to

eqn. (21) to obtain the free energy of the system up to two-

segment terms in the cumulant expansion. Denoting the

variational weight function introduced for each segment i

2008 | J. Mater. Chem., 2005, 15, 2002–2012 This journal is � The Royal Society of Chemistry 2005



by f(i), we have for the probability distribution of a single

segment

r(i) 5 f(i)/fi (23)

with fi:
Ð

d(i)f(i) denoting the integrated weight function for

segment i. The probability distribution for a pair of segments is

given in this approximation by

r(2)(i,j) 5 r(i)r(j)G(i,j)/<Gi,j> (24)

where

SGi,jT:
ð

d(i)d(j)r(i)r(j)G(i,j) (25)

and the expression for the approximate free energy is

{F=kBT&
X

i

ln fiz
X

i=j

lnSGi,jT (26)

The variational weight functions are determined by func-

tional minimization of the above expression for the free energy

which leads to the self-consistency equations

f(i)~ exp
X

j

SGj(i)T{SGi,jT
SGi,jT

" #
(27)

where

SGj(i)T~

ð
d(j)r(j)G(i,j) (28)

The dependence of the variational weight function f(i) on

the positional and orientational variables reflects the symmetry

of the phase under consideration, as detailed in section III,

only now these variables refer to the ith segment rather that the

entire dendrimer.

The input information for the calculations with the

segmental approach are the interaction potentials for the pairs

of inter-dendritic segments as well as those of the intra-

dendritic pairs, the latter differing from the former in that they

include the additional energetic contribution associated with

their connectivity through the dendritic scaffold. The seg-

mental approach rests on the partitioning of the conforma-

tional energy of the dendrimer among the intra-dendritic pairs

of segments, as indicated in eqn. (21). This cannot always

be done in a unique way. Rather than addressing this issue

in a general way, we consider here a specific example of the

application of this approach to a globular dendrimer

functionalized peripherally with mesogenic units

The dimer ensemble model of dendromesogens

To present a concrete application of the segmental approach

we consider the dendritic architecture shown in Fig. 5.

The dendrimer, of the PAMAM type,2 has a flexible

scaffold of symmetrical radial topology, with three branches

radiating at each branching point. The periphery of the

dendrimer is functionalised by attaching identical rod-

like mesogenic units to the terminal branches. This architec-

ture is representative of a class of extensively studied

dendromesogens.2,5–8

Two mesogenic units i, j belonging to different dendrimers

are said to form a non-bonded pair, such as the pair AB9 in

Fig. 5, and are assigned an interaction un(i, j) 5 un(rij, vij) that

depends on the relative position rij and the relative orientation

vij of these units. The interaction of bonded pairs, i.e. pairs of

mesogenic units belonging to the same dendrimer, consists of

the non-bonded interaction and an additional term upath

associated with the conformational constraints imposed on the

relative positions and orientations of the two units as a result

of their attachment at the ends of a path formed by chain

segments (branches) of the scaffold. Accordingly, the bonded

potential ub for a pair i, j is a function of the conformational

variables ni,j of the branch-path that connects them,

ub(i, j) 5 ub{nij} 5 un(ri,j{nij}, vi,j{nij}) + upath{nij} (29)

For simplicity, the flexible branches of the scaffold are

not directly assigned any anisotropic interaction. They are

assumed to exist in a number of discrete conformations,

generated according to the RIS scheme35 with equal intrinsic

probabilities; aside from that, they simply fill space in the

dendritic interior. Accordingly, while the dendrimer in this

model is considered to be built of two kinds of sub-units,

namely the elongated mesogenic cores and the various rigid

segments that are jointed together to form the flexible scaffold,

only the mesogenic cores are endowed with orientability.

Under these assumptions, the pair-wise summation appear-

ing in the free energy expression of eqn. (26) involves a limited

number of inequivalent types of mesogenic pairs. Thus, for the

specific example of fourth generation dendrimer shown in

Fig. 5, there are altogether five distinct types of pair terms

<Gi,j>. One type is formed by mesogenic units belonging to

different dendrimers i.e. non-bonded pairs AB9 in Fig. 5. With

the NS 5 24 mesogenic units of each dendrimer being identical,

and equivalent by virtue of their symmetric attachment on the

dendritic periphery, there are altogether NNS(ND 2 1)/2

equivalent non-bonded pair terms <Gi,j> ; <Gn> in an

ensemble of ND dimers (which therefore contains in total

N 5 NSND mesogenic units).

Fig. 5 Fourth generation PAMAM-type dendrimer topology show-

ing the hierarchy of interactions among intra-dendrimer mesogenic

pairs ABb according to the order of the branching points b 5 1,2,3,4

present in the branch path connecting the members of each type of

pair. An inter-dendrimer pair AB9 is also indicated.
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The other four types of pair terms <Gi,j> are intra-dendritic,

formed, as shown in Fig. 5, by first (AB1), second (AB2), third

(AB3) and fourth (AB4) neighbours on the same dendrimer.

We shall denote these bonded-pair terms by <Gb>, with the

index b 5 1,2,3,4 specifying their neighbour order within the

dendrimer. With the number of equivalent pairs of neighbour

order b denoted by Nhb in the ensemble, we have for the hb

factors the values h1 5 1/2, h2 5 1, h3 5 2, h4 5 8.

According to the above considerations, and noting that the

N mesogenic units in the system, being equivalent, are

described by a single integrated weight f, the segmental

summation in the free energy of eqn. (26) can be carried out to

yield the expression

{F=NkBT~ ln fz
1

2
NS(ND{1) ln SGnTz

X4

b~1

hb ln SGbT (30)

The bonded contributions of different neighbour orders in this

expression correspond to typical mesogenic dimers, i.e. pairs of

mesogenic units linked by a flexible spacer.36 The spacer in this

case is the branch-path that connects the mesogenic pair.

Accordingly, the dendrimer system is treated as an ensemble of

mesogenic dimers with identical terminal units but different

spacers. The proportion of each type of spacer in the dimer

ensemble is governed by the factors hb. From this stage on, the

results obtained within the molecular theory of liquid crystal-

line dimers37–39 can be carried over straightforwardly to the

description of the dendrimers, thus providing a way to phase

transition calculations, evaluation of segmental order para-

meters, pair correlation averages and dynamic response on the

time scale associated with segmental motions. These calcula-

tions start from the interactions of the mesogenic units and the

conformation structure of the pertinent branch-paths within

the dendritic scaffold. It is known that the mesomorphic

behaviour of dimers could be very sensitive to the structure

and length of the spacer.36 This sensitivity is carried over to the

individual bonded-pair terms that are superimposed to form

the free energy of eqn. (30).

The free energy expression in eqn. (30) is not restricted to

symmetric dendrimers of the type shown in Fig. 5 but can be

applied to the description, within the dimer ensemble model,

of any system of mesogenic units connected by flexible

spacers, including main chain and side chain liquid crystalline

oligomers and polymers as well as mesogenic hyper-branched

polymers and networks. For example, written in the form

{F=NkBT~ ln fz
1

2
ln SGnTNz

X

b

hb ln SGbT (31)

the free energy of eqn. (30) can be applied to the entire

hierarchy of linearly linked mesogenic units shown in Fig. 6a.

With N mesogenic units in the system, the purely monomeric

ensemble is described by setting hb 5 0 in eqn. (31) for any b

(all the pairs in the ensemble are non-bonded). The dimer

ensemble is obtained by setting h1 5 1/2 and hb 5 0 for b . 1

(only non-bonded and first neighbour bonded pairs exist in the

ensemble). It readily follows that for an ensemble of linear

symmetric oligomers of order N0 (with N0 denoting the

number of mesogenic units in the oligomer) the factors hb are

given by hb 5 (N0 2 b 2 1)/N0 for b 5 1,…,N0 2 1 and hb 5 0

for b ¢ N0.

The fact that, for large N0, high rank neighbour terms are

present in eqn. (31) does not in general preclude the

applicability of this approach to large linear oligomers and

main chain polymers or to high generation dendrimers. Thus,

if the spacers are sufficiently long and flexible the orientational

correlations among distant neighbours become weak and the

respective ln <Gb> terms can be ignored when using eqn. (31)

to describe the nematic to isotropic phase transition. Calcula-

tions using standard rotational potentials to generate the

conformations of alkyl spacers show that the orientational

correlations between bonded mesogenic units become negligibly

weak as the length of the spacer (measured by the number of

carbon atoms) increased above a dozen carbons.37 Accord-

ingly, with spacers of 6 carbons or longer, it is possible to

ignore the contributions of second (and more distant)

neighbours in eqn. (31). Calculations for the nematic–isotopic

phase transition using eqn. (31) with only first neighbour

bonded terms have been performed for the linear oligomer

systems and for the null generation dendromesogen (star trimer)

shown in Fig. 6, for spacer lengths of six carbons or longer.

In these calculations only hard-body interactions were

considered among the mesogenic units, which were taken to

be hard spherocylinders24 of aspect ratio L/D 5 4. The diameter

D of the spherocylinder was taken to be 4 times the length of a

carbon–carbon bond of the alkyl spacer. The conformations of

the spacers were generated according to the standard 3-state

Fig. 6 (a) Hierarchy of linearly linked repeat units consisting of a rod-like mesogenic core with flexible chains attached at each end. Monomer,

dimer, trimer and polymer members of the hierarchy are shown. The length of the spacer is denoted by ‘. (b) The same repeat units are linked to

form a null generation dendrimer (symmetric star trimer).
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RIS model,35 rejecting self-intersecting conformations and

assuming for simplicity that the trans state and the gauche ¡

states are energetically equivalent. The torsional minima are

located at 0u for the trans state of a C–C bond and at ¡112u
for the gauche states. Librations of ¡7u about the three

torsional minima are allowed in order to dismiss excessive

artificial correlations between the two ends of the spacer. Due

to this simplified conformation generation scheme and the

purely hard body interactions used, the system becomes

athermal (the temperature does not enter explicitly in the

calculations) and the phase transition can be obtained only by

varying the density. Qualitative comparisons can be made,

however, with experimental trends of thermotropic systems

by associating the densities at the transition with inverse

temperatures.

The results on the phase transition densities for the linear

dimer, the trimer, the polymer and the null generation

symmetric dendrimer (star trimer) of Fig. 6 are shown in

Fig. 7 as a function of the spacer length. For the star trimer

there are only first neighbor pairs (3 such pairs per trimer).

Accordingly the respective factors in eqn. (31) are h1 5 1 and

hb 5 0 for b . 1. Consequently, if more distant than first

neighbour pairs are ignored, the free energy for the star trimer

is identical to that of the polymer (for which h1 5 1 but hb ? 0

for b . 1). The conformations of the spacers in these two

systems are of course different as a result of geometrical

differences between the central carbon–carbon bonds of the

polymer spacer and the central nitrogen–carbon bonds of the

star trimer. If such differences are disregarded, as was done for

simplicity in the present calculations, the numerical results for

the transition densities of the polymer and the star trimer will

coincide. It should be noted, however, that the spacer path

linking any two monomers of a symmetric star trimer always

has an odd number of chain segments whereas for the polymer,

and the other linear oligomers, the spacer can have both even

and odd numbers of chain segments.

The results in Fig. 7 indicate that, in spite of the extreme

simplicity of the interactions and the conformation model

used, the basic experimental trends observed for the systems of

linear oligomers and polymers40–42 are conveyed. In particular,

the odd–even alternations in the transition densities (equiva-

lently inverse temperatures) are readily reproduced, with their

amplitude decreasing with increasing spacer length and

increasing on going from dimers to trimers and then to

polymers. These results are also in qualitative agreement with

those of self-consistent molecular field calculations based on

considerably more elaborate models for the conformations and

the segmental interactions.38 Due to the symmetry of the

spacers connecting the mesogenic pairs of the star trimers,

parity alternations are not exhibited by these systems on

changing the length of the three spacer arms. This model

predicts, however, that such alternations could be introduced

on inserting into the sequence asymmetric star trimers with one

spacer arm differing in length from the other two by a single

carbon atom. Finally, it is worth noting that the differences in

the phase transition behaviour of the various systems in Fig. 7,

for the same spacer length, are obtained solely on the basis of

the topological changes associated with the modes of linking

the same number of repeat units (mesogenic cores and alkyl

chains) into different supermolecular entities.

V. Conclusions

We used the variational cluster method to approximate, to

second order terms in the cumulant expansion, the free energy

of an ensemble of dendrimers. We developed two approxima-

tion schemes, a global and a segmental one, in order to address

different aspects of the molecular theory of liquid crystalline

dendrimers.

In the global approach with interconverting shapes, the

dendrimers are viewed as the elementary entities in the

ensemble. This approach is therefore suitable for the descrip-

tion of the self organisation of the entire dendrimers in terms

of their dominant conformations and the respective global

dendrimer–dendrimer interactions. These are dictated by a

coarse grained parameterisation of the atomistic structure of

the dendrimer. Even in its most primitive form (with

dendrimers consisting of two chemically distinct components

and limited to just two interconverting uniaxial shapes, a rod-

like and a disc-like, that are restricted to move on a cubical

lattice) the global approach accounts for all the experimentally

observed dendromesogen liquid crystalline phases that can be

obtained within the uniaxiality restriction on the shapes of the

self-organising entities. It also predicts a rich variety of phase

sequences depending on the intrinsic populations of the two

conformations. In particular, it accounts for the lamellar–

columnar phase transitions and predicts nematic–nematic

transitions associated with changes in the dominant conforma-

tions of the dendrimer.

In the segmental approach, the basic entities in the ensemble

are identified with the mesogenic groups of the dendrimer. The

connectivity of these groups within the dendrimer is conveyed

by an effective potential that can be derived from the

conformational statistics of the dendritic scaffold. With this

approach, the ensemble of dendromesogens reduces to an

Fig. 7 Calculated dependence of the nematic–isotropic phase transi-

tion density r�NI on the length of the alkyl spacer for the linearly linked

dimer (rectangles), trimer (circles), polymer (triangeles) and the

symmetric star trimer (triangles) shown in Fig. 6. The length is

measured by the number of carbons in the alkyl spacer and

corresponds to ‘ of Fig. 6. The density r�NI is expressed in units of

the phase transition density for the monomer system shown in Fig. 6.

For the reasons explained in the text, the transition densities of the

star-trimer coincide with those of the polymer for odd spacer lengths

(the points connected by the dashed line) while even spacer lengths are

not applicable to symmetric star trimers.
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ensemble of mesogenic dimers with spacers of different

lengths, corresponding to the different branch paths within

the dendritic scaffold. The segmental approach is suitable for

the description of the mesomorphic properties that are

sensitive to the ordering and the motion of dendritic segments

rather than of the dendrimer as a whole. However, it should be

kept in mind that the dimer picture of the segmental approach

is obtained by ignoring correlations of more than two

mesogenic segments at a time, and therefore its reliability is

restricted to situations not involving strongly correlated

collective movements of the dendrimer constituents. The

segmental approach, on the other hand, provides a unified

description for a broad variety of supermolecular and macro-

molecular mesogens with different linkage topologies of their

repeat units.
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