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Systematic efforts to synthesize fullerene-containing liquid crystals have produced a variety of
successful model compounds. We present a simple molecular theory, based on the interconverting
shape approach [Vanakaras and Photinos, J. Mater. Chem. 15, 2002 (2005)], that relates the
self-organization observed in these systems to their molecular structure. The interactions are
modeled by dividing each molecule into a number of submolecular blocks to which specific
interactions are assigned. Three types of blocks are introduced, corresponding to fullerene units,
mesogenic units, and nonmesogenic linkage units. The blocks are constrained to move on a cubic
three-dimensional lattice and molecular flexibility is allowed by retaining a number of
representative conformations within the block representation of the molecule. Calculations are
presented for a variety of molecular architectures including twin mesogenic branch monoadducts of
Cp twin dendromesogenic branch monoadducts, and conical (badminton shuttlecock) multiadducts
of Cgy. The dependence of the phase diagrams on the interaction parameters is explored. In spite of
its many simplifications and the minimal molecular modeling used (three types of chemically
distinct submolecular blocks with only repulsive interactions), the theory accounts remarkably well

for the phase behavior of these systems. © 2005 American Institute of Physics.

[DOI: 10.1063/1.2085026]

I. INTRODUCTION

The possibility of controllable formation of ordered mo-

mesogenic unit [Fig. 1(a)]. Compounds of this type
have been reported to form exclusively smectic-A
mesophases.

lecular assemblies of fullerenes is of fundamental importance  (b) Twin dendritic branch monoadducts®®1%1? of Cg,
. . . 1-3 4
for the use of these allotropes in applications. ~ However, with two branches, as in (a), except that each branch is
the strong interactions among fullerene molecules normally linked to a whole dendrimer [Fig. 1(b)], the branches of
lead to the formation of aggregates and therefore addends are which are functionalized with mesogenic units (den-
used in order to modify favorably these interactions. The dromesogen). The dominant LC phase exhibited by
covalent linkage of fullerenes to liquid-crystal (LC) forming these supermesogens is the smectic-A mesophase, al-
molecules (mesogens) offers a way to self-organized struc- though the possibility of formation of nematic phases,
tures in which the fullerenes form ordered molecular in addition to the smectic-A phase, has been reported
assemblies.* Viewed from the LC perspective, the fullerina- for certain low-generation denrome’sogen addends.”'2
tion of mesogens establishes a new direction in the design of . . 7.8.13.14
) . . . . (c) Single dendromesogenic branch monoadducts of
mesomorphic functional materials, given the peculiar photo- C. These are modifications of (b) in which one of the
and electrochemical properties of the fullerene molecule. tvsg. branches terminates in a dendromesogenic unit and
Starting - 1996 . with the work of . Chuard and the other has a nondendritic terminus [Fig. 1(c)]. These
Deschenaux,” systematic efforts to synthesize fullerene- compounds  are  reported  to  exhibit  smectic-A
containing LCs have produced a variety of successful model mesgphases p
ds. Th d fi d by th lent )
;orlilpoun fS ese compounds are orrr.lte ty' ?1 COVfa tellll (d) Dendromesogenic bisadducts' of Cg, [Fig. 1(d)] with
HRAgE ©F ORe OF MOTE MESORCNIC unts, Lypiedfy oF He two dendromesogenic branches as in (b). The structure
calamitic (rodlike) type, at one or more sites of the fullerene £ th hase f d by th : dsh
frame. Depending on the structure of the mesogenic part and g t f:élles%p dase olrmfa 1 y these compounds has not
the topology of the fullerene-mesogen linkage, these com- cen eqtl ed conclusively. 16 ) .
pounds can be grouped into the following types, with the (e) ?fv?zofrilr::cchzZazzghhgziicglzctfrmi()rfalcrﬁ)ésigeriilr;aftf
respective architectures illustrated in Fig. 1. ’ ’
P £ o are attached via six methanofullerene connecting
(a) Twin mesogenic branch monoadducts™ of Cgy in groups [Fig. 1(e)]. These supermesogens form smectic-
which two branches are attached, typically via a metha- A phases.
nofullerene connecting group. The branches start out  (f)  Conical (badminton shuttlecock) multiadducts'”™" of

with a flexible alkyl spacer and terminate with a rodlike
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Ceo [Fig. 1(f)]. The conical surface is formed by the
direct attachment of (five) mesogenic units via single
bonds to carbon sites of the fullerene, which thus be-
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FIG. 1. Various architectures of mesogen-functionalized fullerenes: (a)—(c)
monoadducts, (d) bisadducts, (e) hexa-adducts, and (f) conical multiadducts
of Cg.

comes the apex of the cone. Hexagonal- and nematic-
columnar mesophases have been reported for these
supermesogens.

The variety of fullerene-containing LC compounds is al-
ready broad enough to permit the deduction of certain trends
and possibly empirical design rules and also to provide test-
ing grounds for a molecular theory. The purpose of this paper
is to introduce a simple molecular theory relating the self-
organization exhibited by these systems to their molecular
structure.

The molecular interactions are modeled in a modular
fashion. The fullerene-containing mesogen is divided into a
number of chemically distinct submolecular components
(modules) to which specific interactions are assigned. The
total interaction of the molecular ensemble is then built up as
a combination of interactions between all the possible pairs
of modules within the ensemble. To simplify the computa-
tional aspects of the theory, the modular subdivision of the
molecules is done rather coarsely, distinguishing only three
types of submolecular components: fullerene units, me-
sogenic units, and nonmesogenic units (flexible spacers and
linkage groups). For the same reasons of simplicity, the
molecules are taken to move on a cubic three-dimensional
lattice.

In its present primitive form, the theory attempts to de-
scribe in a unified way only the basic trends observed in the
self-organization of these systems. It is not intended to pro-
vide a quantitative description or to account for peculiarities.
Indeed, it is well known from the study of many conven-
tional “simple” LCs that apparently small changes in the
molecular structure could bring about dramatic changes in
the self-organization. The treatment of analogous situations
in fullerenated LCs is clearly beyond the reach of the present
form of the theory.
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The modeling of the molecular conformations and inter-
actions is described in Sec. II. The results of the calculations
for various architectures of fullerenated LCs are presented
and their significance is discussed in Sec. III. The conclu-
sions from this work are stated in Sec. IV. An appendix is
included for completeness where the statistical-mechanics
formulation underlying the phase-transition calculations is
outlined.

Il. MOLECULAR MODELING ON A CUBIC LATTICE

The statistical-mechanics machinery of the present
theory is based on the interconverting shape approach20 and
summarized in the Appendix. In this section we describe the
application of this approach to study the phase behavior of
fullerene containing supermesogens of various architectures.
As detailed in Ref. 20, the necessary ingredients for the
implementation of this approach are as follows.

(1) The identification of a number of discrete molecular
states or “shapes” representing the basic types of mo-
lecular conformations.

(ii)  The assignment of an intrinsic probability Pg to each
shape S, giving the probability of finding an isolated
molecule in that shape. Equivalently, an intrinsic free
energy &g is assigned to each of these shapes.

(iii)  The coarse-grained subdivision of the molecules into
blocks with specified interactions. The overall mo-
lecular interactions are then described by a modular
pair potential combining the interactions among all
possible intermolecular pairs of blocks.

These ingredients are molecular characteristics that can
be obtained to the desired detail by standard molecular-
mechanics calculations on the atomistic scale. However, as
the focus of this work is on the qualitative picture of me-
sophase description, rather than on quantitative accuracy, a
minimal number of representative molecular shapes will be
introduced, with rough estimates for their intrinsic probabili-
ties, and a rather coarse molecular subdivision will be used
together with a very simple parametrization of the block-
block interactions. Thus, based on the presence of the
fullerene molecule in the systems presented in Fig. 1, we
have chosen to model their chemical structures on the length
scale of the diameter of a single fullerene. An analogous
discretization, on that length scale, is applied to the molecu-
lar motions in space. The molecules are constrained to move
on a rectangular three-dimensional lattice with unit-cell di-
mensions equal to a fullerene diameter. The coarse-grained
molecular shapes are then tailored using building blocks of
size equal to the unit cell of the lattice space. In all cases
considered here the molecular states consist of a building
block corresponding to the fullerene unit and of several
blocks connected to build up the grafted addends according
to the molecular architecture of the state. Block representa-
tions for selected molecular architectures from Fig. 1 are
depicted in Figs. 2—4.

Once the molecular shapes have been built, the interac-
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tion potential U;, ] between molecules I and J is obtained in a
modular fashion®’ by combining interaction contributions
among intermolecular pairs of blocks,

U= bi;, (ublefS(Rb,bJ) +uj b16(|Rb,bJ| - 1), (1)
177
where R), b, denotes the distance between blocks b; and by,

and u(O) and ugl)b stand for the interaction potentials for a

pair of blocks occupying the same or adjacent lattice sites,
respectively. In what follows the block index b can be either
for mor [, denoting, respectively, fullerene units, mesogenic
units, and nonmesogenic linkage units. We assume the fol-
lowing general form for the intermolecular block-block in-
teraction potential ué")b ,n=0, 1:

ul) =g\, +w) Pae, - ey), )

(n)
b’ b, b’
actions among blocks b and " when they occupy the same,
n=0, or adjacent, n=1, cells.

The qb , terms define the strength of the nondirectional
(isotropic) part of the block-block interactions. It should be
noted, however, that these terms alone are sufficient to gen-
erate a directionality in the overall interaction among the
molecules if the (nondirectional) blocks are connected to-
gether in a directional manner (as it is the case in all the

with ¢, ,, and W being strength parameters for the inter-

Y
=

(a) (b)
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FIG. 2. Space filling and block representations of the
dominant shapes of typical monoadduct Cg, derivatives.
Darker shading in the three top blocks in (c) is used to
indicate coincidence of two blocks within a single lat-
tice site.

block representations of the shapes in Figs. 2—4. The terms
Wiy
ality in the block-block interactions. This would account for
the anisotropic interactions among mesogenic units, in the
case where blocks b and b’ correspond to such units. The
directionality is conveyed simply by the Legendre polyno-
mial of second order, P,(e,-e,/), where e, and e, are unit
vectors defining the long axes of the mesogenic units. In the
block constructions used here (Figs. 2-4), these axes coin-
cide with the directions of the branches to which the me-
sogenic units belong. Polar interactions among blocks have
been ignored but they could readily be accounted for in more
elaborate calculations by including P,(e,-e,/) terms in Eq.
(2). Their omission from the present calculations is done for
reasons of simplicity and does not necessarily imply that
their effects are negligible. In fact, the molecular structures
of most of the compounds considered in this study include
segments with strong electric dipole moments and such mo-
ments are known to affect significantly the relative stability
of liquid-crystalline phases of common mesogens.ﬂ’22
Next, we describe in some detail the conformation struc-
ture and intrinsic probabilities as well as the block idealiza-
tion and interactions for three generic architectures of
fullerene-containing supermesogens.

in Eq. (2) allow for the inclusion of intrinsic direction-

FIG. 3. Space-filling model (a) and
block representations of two represen-
tative shapes, (b) and (c), of a typical
2nd generation dendritic monoadduct
Cg derivative. Darker shading in all
but the bottom block the in (c) is used
to indicate coincidence of two blocks
within a single lattice site.

(c)
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() (b)

FIG. 4. Space-filling model (a) and block representation (b) of a multiadduct
fullerene derivative with conical shape. The wire-frame drawing of some
blocks has been used in order to provide a better view of the empty space
between the grafted addends.

A. Twin mesogenic branch of Cgy(TMB-Cg)

These consist of two identical branches grafted on the
surface of a Cg fullerene, Fig. 1(a), with each branch bear-
ing one mesogenic unit. Clearly, the number of accessible
conformations for such systems is quite large due to the flex-
ibility of the spacers connecting the Cg, moiety with the
mesogenic units. Furthermore, molecular-mechanics calcula-
tions with widely accepted empirical force fields® indicate
that conformations of completely different overall shapes
may not differ substantially in their energies. In addition,
molecular states with the mesogenic units on the same side
of the Cg4y and mutually parallel, despite some energetic gain
due to van der Walls attractions between the mesogenic units
(compared to states with the mesogenic units far apart), are
achieved for a limited number of energetically accessible
conformations of the flexible spacers and thus become en-
tropically disfavored.

Based on these considerations we model the TMB-Cg,
systems by grouping the molecular conformations in three
distinct coarse-grained molecular shapes. Each shape con-
sists of a single fullerene block and two branches. With
building blocks of the fullerene size, the actual length of
each branch is roughly three times the fullerene diameter.
Consequently, each branch consists of three linearly attached
building blocks of which the one closest to the fullerene is
partially occupied by the flexible spacer and the next two are
occupied by the mesogenic unit. In the first of the shapes, to
be referred to as the extended antiparallel (EA) shape (de-
noted by EA), the two branches extend in opposite directions
rendering the shape cylindrical symmetric (strictly, fourfold
symmetric on the cubic lattice) and apolar [Fig. 2(a)]. In the
second, the L shape (denoted by L), the two branches are
mutually perpendicular and the molecular shape lacks both,
apolarity and cylindrical symmetry [Fig. 2(b)]. In the third
shape, to be referred to as the folded parallel (FP) shape
(denoted by FP) both branches share the same space [Fig.
2(c)] and the molecular block representation is cylindrically
symmetric and polar.

With each branch constrained to a linear array of the
building blocks, these three shapes exhaust all the possibili-
ties on a cubic lattice. Accordingly, the various bent (V-
shaped) conformations, which represent the majority of the
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TMB-C¢, molecular states, are understood to be conveyed by
one of these shapes, depending on the magnitude of the bent
angle (the FP shape for acute bend, the EA shape for flight
bend, and the L shape for intermediate bend angles).

For this class of systems the branches grafted on the
fullerene are not very bulky. Hence we assume that any two
submolecular blocks interact only when they occupy the

same lattice site and consequently ul) of Eq. (1) is taken to

bb’
vanish for any pair of blocks. For the parametrization of u;?o;,

we assume that the lattice sites containing fullerene building
blocks are not permitted to be occupied by any other block,
i.e., fullerene blocks are impenetrable both to other fullerene
blocks and to blocks corresponding to branches. Further-
more, the building blocks of the branches are assumed to
exert on one another soft repulsions without any directional-
ity. In the parametrization of Eq. (2), these assumptions cor-

respond to w” =0 for any intermolecular pair of blocks

bb'
0 0 0 0
b.b', qf)=o for b=f or m or [, and q}) =g, =q\n=u>0,

with u serving as the measure of the “hardness” of the repul-
sive interactions among these blocks. The implications on
the molecular organization of the TMB-Cg, upon the inclu-
sion of directional interactions between branches are also
considered in some of our calculations by allowing for
w(b(’);, #0.

The intrinsic free energies of the shapes with extended
antiparallel or perpendicular branches are assumed to be
equal, egp=¢g;,=0. For the intrinsic free energy epp of
the remaining, FP, shape we consider the three possibilities
epp=>0, epp=0, or epp <0 corresponding to this shape being
intrinsically less, equal, or more probable than the other two
shapes.

B. Twin dendromesogenic branch of Cg,(TDB-Cg)

This is the case of liquid-crystalline dendrons attached to
the Cg surface giving rise to molecular architectures similar
to those in Figs. 1(b) and 1(d) and their higher generation
counterparts. The chemical structure of a second generation
mesogenic dendrimer grafted at a single point on the
fullerene surface”® is depicted in its fully extended confor-
mation (the two dendritic branches extending in opposite di-
rections) in Fig. 3(a). In accordance with molecular-
mechanics calculations, conformations with both dendritic
branches on the same side of the fullerene (not shown in Fig.
3) are also possible. Therefore we assume that the molecular
conformations can be grouped in two dominant molecular
shapes with the dendritic units extending either on the same
side (FP shape) or to the opposite sides (EA shape) and we
have built these shapes according to the shapes shown in
Figs. 3(b) and 3(c). At this level of resolution, the primary
difference from the structures of Fig. 2 is that the arms
grafted to the fullerene are bulkier. Different tones of shading
have been used in Fig. 3 to distinguish blocks of different
contents. We have used the darker shading for the addends of
the FP shape to indicate that, in this case, the addend blocks
of both branches share the same space and therefore their
density is twice as large compared to the density of the cor-
responding blocks of the EA shape.
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TABLE I. Interaction parameters for building blocks occupying the same
lattice site, qﬁfi) by or adjacent lattice sites, qzl])bz (values in brackets).

b, Ff(Ceo) [ (Spacer) m (Mesogens)
by

J(Ceo) @ (0) o (u/2) oo (ul4)

[ (Spacer) oo(u/2) u(ul/4) ul4 (0)

m (Mesogens) o(ul4) ul4 (0) ul4(ul8)

Calculations were performed initially with the inclusion
of a third, L, shape. These calculations showed, however,
that the inclusion of this shape does not alter significantly the
phase behavior of the system. The parametrization of the
block-block interactions when the blocks occupy the same
lattice site is similar to the corresponding parametrization for
the TMB-Cg, blocks. In order to convey the bulkier nature of
the dendritic addends of the TDB-Cg, we have assumed that
the addend blocks repel softly each other even when they are
in adjacent cells. The form of the interaction potential we
have used for the calculations for the block model of TDB-
Cyo 1s summarized in Table I where the single hardness pa-
rameter u corresponds to the strength of the repulsive poten-
tial between two [ blocks when they occupy the same lattice
site.

It should be noted here that this block representation is
expected to break down for grafted dendromesogens of gen-
eration higher than the third. In that case, the fullerene size
becomes very small compared to the rather bulky branches
which would thus cover the fullerenes completely, therefore
preventing any direct fullerene-fullerene interactions.

C. Conical supermesogens with a fullerene apex
(CSM-Cg)

These are shown in Fig. 4 together with the respective
block structure used in the present modeling. Here we as-
sume two kinds of molecular building blocks, the fullerene
blocks (f blocks) and the blocks that correspond to the
grafted addends (m blocks). A single shape is assumed for
these systems. This renders the block representation of the
supermesogen rigid. Such representation is in line with the
chemical structures of the CSM-Cg, where five aromatic
groups are attached around a pentagon of the fullerene
molecule' " thus forming an essentially rigid “nanoshuttle-
cock.” Certainly, the presence of aliphatic end chains on the
grafted mesogenic groups of the real systems introduces
some molecular flexibility which, however, entails only mi-
nor deviations from the dominant hollow-cone molecular
shape.

For a broader assessment of the significance of the re-
sults to be presented in the next section, it is worth noting
that, first, the theoretical framework outlined here is not re-
stricted to fullerene containing LCs nor is the lattice repre-
sentation an inherently restricting feature of the theory; it
merely reduces the computational effort without seriously
distorting the essence of the molecular description. Secondly,
the assignment of the interblock interactions adopted here
is based mainly on intuition. However, taking into account
the detailed structure of chemical units that fill the building
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blocks, the use of simple molecular-mechanics calculations
can provide more accurate estimates of the interblock inter-
actions.

lll. RESULTS AND DISCUSSION

Here we present results on the phase behavior of the
three types of model structures introduced in the previous
section. Starting with the TMB systems, different situations
are explored within the parametrization adopted for the
block-block interactions (strength parameter u) and the in-
trinsic probabilities of the molecular conformations (param-
eter gpp). For all the combinations of u and epp studied, the
mesophases formed by these systems are nematic and or-
thogonal smectic phases of different layer structures.

Due to the possibility of interconversions between mo-
lecular states of significantly different molecular lengths, the
smectic polymorphism found in these systems has some no-
table differences from the polymorphism of conventional
smectic compounds for which a single molecular length is
dominant. It is known that strongly polar rodlike molecules
give rise to a rich polymorphism of orthogonal layered
Inesophases.zz’z‘lf26 Thus, distinctions of the smectic-A
(SmA) phases into SmA,;,SmA,, and SmA, phases are intro-
duced, where the indices 1, d, and 2 indicate that the wave-
length of the periodic density modulation is, respectively,
one, d(1<d<2) or two times the effective molecular length.
Moreover, incommensurate SmA; phases have been
reported.26 These phases are characterized by spatial modu-
lations along the nematic director with wavelengths ¢ and ¢’
of irrational €/€’ ratio. This classification of the smectic-A
phases assumes the existence of a single molecular length (or
at least a narrowly defined range of molecular lengths).
Clearly this is not the case for the TMB systems of Fig. 2
where the three dominant states of the molecule are vastly
different in their geometrical characteristics. However, for
the purpose of the present study we have labeled the smectic
phases in close analogy to the widely accepted nomenclature
of the conventional smectic compounds, by defining the
“molecular length” to be the sum of the grafted branch
length and the fullerene diameter. According to this choice of
molecular length measure, we denote by SmA ;; highly inter-
digitated smectic phases where the fullerenes within a smec-
tic layer form a single sublayer of thickness equal to the
fullerene diameter (fullerene monolayer). Smectic-A struc-
tures with a structure similar to SmA ;; but with the thickness
of the fullerene-rich sublayers being twice the fullerene di-
ameter are denoted as SmA,, (fullerene bilayer within a
single smectic layer). Finally, incommensurate smectic
phases with structures corresponding to a superposition of
SmA,; and SmA ,, are denoted as SmA .

The phase behavior of the TMB systems, adopting the
above nomenclature for the layered phases, is summarized in
Figs. 5(a)-5(d) where we plot pressure versus reciprocal
temperature phase diagrams for various values of the scaled
intrinsic free-energy difference epp/u. In all cases, the sys-
tems exhibit an isotropic phase (I), different orthogonal
smectic phases, and a low-temperature uniaxial nematic
phase (N) which, however, is stable over a rather narrow
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FIG. 5. Calculated phase diagrams (scaled pressure vs reciprocal tempera-
ture) for the three state interconverting model of the TMB-Cg, monoadducts.
The EA and L shapes have been taken to have equal intrinsic probabilities
(ega=€1.=0) and four different cases for the intrinsic probability of the
third, FP, shape were considered corresponding to: (a) egpp/u=-3, (b)
epp/u=—1, (c) epp/u=1, and (d) egp/u=3. The interaction parameter g, has
been set equal to 0.1 in all cases.

region of the phase diagram [not shown at all within the
plotted temperature range in Fig. 5(a)]. The orthogonal smec-
tic phases differ in the way the fullerenes organize within the
smectic layers and also in the degree of interdigitation of the
arms in adjacent smectic layers. Specifically, in the high-
temperature, high-pressure smectic phases the fullerenes are
arranged on a single sublayer (fullerene monolayer, SmA ;)
while in the lower-temperature smectic phases the fullerenes
occupy two successive sublayers (fullerene bilayer, SmA ;).

All the phase transitions are of first order. The SmA
-SmA,, and the isotropic to nematic transitions are weaker
than the isotropic to smectic transitions and nematic to smec-
tic transitions. The nematic phase, for all the studied systems,
appears only at low temperatures where the shapes become
practically impenetrable and their self-organization is deter-
mined primarily by the overall shape anisotropy.

For epp/u=-3, namely, when the folded, FP, shapes are
intrinsically much more probable than the extended shapes
(EA and L), the SmA ;, molecular organization dominates the
layered mesophases except for a small window at high
pressures-low temperatures where the SmAd; phase is more
stable, [Fig. 5(a)]. In this case the nematic phase appears
only at very low temperatures. On increasing the free energy
epp but still keeping it negative, egp/u=—1, the overall to-
pology of the phase diagram remains the same but with a
larger SmA; phase region [Fig. 5(b)]. The tendency towards
the stabilization of a SmA; type of molecular organization is
further strengthened when epp/u=1 [Fig. 5(c)]. In that case,
with the folded parallel shape having higher intrinsic free
energy (lower probability) than the extended antiparallel
shape, the SmA,; window extends to higher temperatures.
For the cases mentioned above there are three possibilities of
phase sequences on decreasing the temperature at constant
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FIG. 6. Calculated bulk probability of the EA (circles), the L (triangles), and
the FP (squares) shapes, as a function of pressure for the system whose
phase diagram is given in Fig. 5(c) at the fixed value of scaled temperature
u/kgT=0.2. Shown on the diagram are also the intrinsic probabilities of the
EA and L shapes (solid line) and of the FP shape (dashed line).

pressure: (a) the high-pressure phase sequence I-SmA,
-SmA ,, (b) the intermediate pressure sequence /-SmA ;,, and
(c) the low-pressure sequence I-N-SmA ;5.

The topology of the phase diagram and subsequently the
possible phase sequences change dramatically when epp/u
=3 [Fig. 5(d)]. In that case the region of stability for the
SmA is greatly enhanced covering, for moderate pressures,
the entire temperature range. Thus the phase sequences
I-SmA,; and I-N-SmA,;, not observed before, become pos-
sible when the molecular shapes with their branches sepa-
rated (EA or L shapes) are given high intrinsic probabilities.

Near the smectic-smectic phase transitions the spacing
of the layered phases increases significantly. This is found
not to be due to a weakening of the molecular interdigitation
but rather to the formation of thermodynamicaly stable in-
commensurate smectic phases with the layers divided into
sublayers exhibiting both SmA,; and SmA,, types of mo-
lecular organization. These intermediate phases are stable
over very narrow ranges, appearing in a nearly continuous
succession between SmA,;; and SmA ;.

The molecular organization in the smectic phases and
the relative population of the shapes are dictated mainly by
microsegregation. This is demonstrated in Fig. 6 where we
have plotted the bulk probability of the three molecular
shapes as a function of pressure at a fixed value of the scaled
temperature u/kzT=0.20 for the system with ggp/u=—-1. On
the same diagram, the horizontal lines indicate the intrinsic
probability of the EA shape and the L shape (solid line) and
the FP shape (dashed line). It is clear from this plot that the
L shape becomes substantially less probable in all ordered
phases while it is equally probable with the EA shape in the
isotropic phase. The marked changes of the bulk probabili-
ties across the phase transitions reveal the conformational
nature of the transitions. It is worth noting that these bulk
probabilities can be viewed as the relative concentrations in a
“mixture” of the three shapes that is optimized with respect
to their packing in each of the thermodynamically stable
phases. The interconverting shape approach used here pro-
vides precisely the basis for the self-consistent determination
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of the stable phases and for the calculation of the “optimal
concentrations” of the different shapes as a function of the
thermodynamic variables of the system.

We have repeated the calculations retaining only the two
linear shapes (EA and FP) and omitting the L shape. In this
case, apart from a relatively weak stabilization of the ordered
phases with respect to the isotropic phase, the phase dia-
grams are qualitatively the same with those obtained by re-
taining all three shapes. This demonstrates that molecular
shapes whose symmetries deviate significantly from the sym-
metry of the phase have a minor influence on the molecular
organization in the ordered phases, since they are strongly
suppressed within the bulk phase, even though their intrinsic
probability is comparable to that of the dominant shapes.

We have also investigated the TMB systems in the pres-
ence of intrinsically directional block-block interactions for
the end blocks, which correspond to mesogenic units. We
have considered orientational interactions whose relative
strength W’(S)mzwfr%/ u with respect to the isotropic interac-
tion is varied from Wfr?)m=—0.5 up to —2. The calculated
phase diagrams are presénted in Figs. 7(a)-7(c). It is appar-
ent from the graphs that the topology of the phase diagrams
presents some clear differences from the corresponding
phase diagrams of the systems that lack orientational inter-
actions. Thus, when the strength of the orientational interac-
tion is quite high the nematic phase disappears completely
from the phase sequence in favor of the smectic phase (Fig.
7(c)). This implies that the directional interactions of the end
blocks strengthen the molecular tendency for microsegrega-
tion. A notable consequence of the directional interactions on
the layered molecular organization is the lowering of the
degree of interdigitation. This happens because molecules of
adjacent layers interdigitate only up to the extent that their
mesogenic end blocks are brought to side-by-side register.
This picture is consistent with the destabilization of the
SmA,; on increasing the strength of the orientational inter-
actions due to the fact that the SmA ;,-like molecular organi-
zation allows on average more registered end blocks per
layer compared to the SmA ;;-like molecular organization.

Turning now to the twin TDB-Cg, systems, we show in
Figs. 8(a)-8(d) the phase diagrams of pressure versus intrin-
sic probability of the extended antiparallel shape, for four
different values of the interaction parameter u/kgT.

The phase diagram in Fig. 8(a) has been calculated for
u/kpT=0.025, corresponding to weakly repulsive addends.
The system exhibits two smectic-A phases of which the high-
pressure/low-temperature phase is a SmA, (fullerene mono-
layer) and the low pressure is a SmA,, (fullerene bilayer).
The stability of the phases is due to the microsegregation
dictated by the molecular partitioning. As seen in Fig. 8(b),
increasing the strength of the interblock repulsion to u/kzT
=0.05 yields a phase diagram that differs from that of Fig.
8(a) in that the SmA,, phase is stable over a narrower pres-
sure range and a small nematic region appears between the
isotropic and the SmA 4, regions at high intrinsic probabilities
of the extended antiparallel shape.

For u/kgT=0.1 we have significant changes in the phase
diagram, shown in Fig. 8(c), with respect to the phase dia-
grams obtained with weaker interactions [Figs. 8(a) and
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FIG. 7. Same as in Fig. 5(b) only with the end blocks (mesogenic units)
interacting via an additional directional component of the potential whose
strength Wfs)m relative to that of the nondirectional component u is given by
(@) w0 ==05, (0) #%, =-1, and (c) 7, =-2.
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8(b)]. First, the structure of the low-pressure smectic phase is
no more interdigitated: the layer spacing becomes equal to
the full length of the extended antiparallel molecular state.
Secondly, the interdigitated SmA, phase appears only at
high pressures and is strongly destabilized at high intrinsic
probability of the extended antiparallel shape. Lastly, the
nematic range is significantly broadened. These differences
indicate that strengthening the repulsive interactions between
the addend blocks enhances the role of the overall molecular
shape in driving the molecular self-organization and weakens
the influence of submolecular partitioning, therefore render-
ing less significant the contribution of the microsegregation
mechanism to the molecular ordering. These inferences are
further supported by the phase behavior of the system for
u/kgT=0.2. As indicated on the phase diagram in Fig. 8(d),
this system does not exhibit any interdigitated smectic
phases. The possible phase sequences are either /-SmA, at
low intrinsic probability of the extended antiparallel shape,
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or I-N-SmA, at higher probabilities. These are similar to the
phase sequences exhibited by sterically interacting rodlike
systems.”’

Generally, in the limit of very low intrinsic probability
for the EA shape, namely, when P% 4 <<1 for the TDB model
systems or when epp<<ep, for the TMB, the molecules are
practically rigid, exhibiting a single shape with the me-
sogenic units extended on the same side. Clearly, these mo-
lecular shapes are comparable to the dominant shapes of the
single dendromesogenic branch monoadducts of Cg, shown
schematically in Fig. 1(c). These systems do not exhibit
nematic phases indicating that enhanced molecular polarity
disfavors nematic ordering. This is in accordance with what
is observed experimentally.7’8’13 Furthermore, the molecular
organization within the smectic layers corresponds to a bi-
layer arrangement with a spacing of about six submolecular
blocks. Taking into account that the block length is roughly 9
A (the fullerene diameter), the calculated spacing is found
around 55 A, in good agreement with x-ray-diffraction
(XRD) measurements on the real compounds.7

When all the shapes come into play the phase behavior
becomes richer, primarily due to the formation of various
smectic phases. The polymorphism of the smectic organiza-
tion stems from chemical affinity differences between dis-
tinct molecular parts in conjunction with molecular flexibil-
ity. Thus, the degree of interdigitation between adjacent
layers and the molecular organization within the layers are
determined by the interplay between the molecular flexibility
and the formation of well-defined microsegregated struc-
tures. As calculations indicate, phase transitions between
smectic phases are accompanied by rather strong conforma-
tional changes but not necessarily by substantial changes of
the layer spacing. Regarding the smectic phases of the stud-
ied TMB and TDB systems, the SmA,, phase is favored
primarily by the high probability of the FP shapes while the
SmA,; is more stable when the EA molecular shapes have
appreciable intrinsic probability. Both phases exhibit ex-
tended interdigitation and their layer spacing differs by one
fullerene diameter (9 A).

Finally, for the conical supermesogens with a fullerene

08 10

apex (CSM-Cq), the assumed effective rigidity of the block
representation of the molecule removes any dependence of
the phase behavior on the conformational statistics. The
block-block interaction potential used for the CSM-Cg, cal-
culations is formulated and parametrized along the same
lines described for TMB-Cgo, and TDB-Cgy with 1}=u")
=00, u%ﬂ:u>0, ugqu)zo, and no [ blocks present. Here, as
before, u is a measure of the softness of the repulsions
among the grafted addends. Figure 9 shows the calculated
phase diagram, the thermodynamic variables in this case be-
ing the scaled pressure, pv,,/u, and the scaled reciprocal
temperature u/kgT. It is apparent on that phase diagram that
the system, depending on pressure, may exhibit two different
phase sequences. At low pressures the system transforms, on
lowering the temperature, from the isotropic phase to a co-
lumnar phase through a first-order transition. At higher pres-
sures, a bilayer interdigitated smectic-A phase is inserted be-
tween the isotropic and the columnar phase.

Strictly, the positional organization of the CSM-Cg, su-
permesogens in the plane perpendicular to the columns is
forced to a rectangular columnar ordering due to the imposed
cubic lattice restrictions on the positions of submolecular
blocks. In other words, the axis parallel to the common col-
umn orientations can only be a C4 or a C2 symmetry axis
and therefore the only two-dimensional positional order al-

40

30+

PVor

201

10+

0

0.0 0.1 0.2 0.3 04
u/kT

FIG. 9. Calculated phase diagram for CSM-Cg, conical molecules with a
fullerene apex.
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lowed is of rectangular symmetry. This makes it impossible
to distinguish between hexagonal and rectangular columnar
phases within the present lattice model. However, the phase
behavior of the system, in particular, the phase boundaries of
the columnar phase to the isotropic or to the smectic phase,
is not expected to be severely influenced by this limitation
since the free-energy difference between a hexagonal and
rectangular columnar phases is expected to be rather low
compared to the difference between the columnar (rectangu-
lar or hexagonal) and nematic or smectic free energy.

The picture for the intracolumnar organization of the
CSM-Cg, supermesogens is clear: the columns are strongly
polar since the molecules stack one on the top of the other so
that the fullerene unit of the upper molecule is accommo-
dated inside the cone aperture formed by the addends of the
next supermesogen in the column. It should be noted here
that, as a consequence of assuming nonpolar block-block in-
teractions, the energy required to slide two adjacent columns
parallel to each other does not depend on the their polarity.
Accordingly, the overall polarity of these columnar phases is
determined solely on entropic grounds, rendering the macro-
scopically apolar columnar phases more stable than the polar
ones.

IV. CONCLUSIONS

We have studied the phase behavior and the molecular
organization for a wide variety of fullerene containing liquid
crystals with the aid of a simple molecular theory. Despite
the very crude representation of the molecular structure in
terms of a small number of submolecular blocks, restricted to
move on a cubic lattice and interacting via simplified addi-
tive block-block potentials, the theory accounts consistently
and qualitatively for the basic experimental observations on
all the classes of compounds considered. The observed nem-
atic, smectic, and columnar phases are reproduced correctly
and the molecular features that influence their stability are
identified. The peculiar smectic polymorphism exhibited by
compounds of twin-branch architecture is elucidated in rela-
tion to molecular structure and interactions. While the mo-
lecular modeling and the computational aspects of the theory
are susceptible to further refinements, the results obtained
with its present, simplified, form can be useful for the mo-
lecular design of model fullerene-containing liquid-
crystalline compounds.
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APPENDIX: OUTLINE OF THE INTERCONVERTING
SHAPE APPROACH

Here we summarize the statistical-mechanics foundation
of the interconverting shape approach20 that we have applied
to the fullerene-containing supermesogens (here refereed to
simply as “molecules”) of the present study.

Consider an ensemble of N identical molecules occupy-
ing volume V at temperature 7. The individual molecules are
labeled by the indices /,J...=1,2,3,...,N. We denote the
position of the Ith molecule by R; and its orientation by ().
These variables are denoted collectively by w;=(R;;);). The
set of variables specifying the conformational state of the
molecule are denoted by v; and E(v;) stands for the energy of
the molecule at that state.

It is assumed that the interaction between two such mol-
ecules can be described by the pair potential Uy,
=U(R;;;Qy vy, vy), with Ry;,€);; denoting, respectively,
the position and orientation of molecule J relative to /. Each
molecule is taken to consist of a number of effectively rigid
segments (or submolecular “blocks™) and the interaction po-
tential U, is further assumed to be a superposition of poten-
tials among all the intermolecule pairs of such segments.
Accordingly the interaction potential between molecules [
and J is written as

U= 2 wy,p (@p5), (A1)

brby

where W, b, denotes collectively the relative positions Ry,
and orientations prbj of the pair of blocks b;,b; and the
summation runs over all the blocks of molecules I and J.

The conformational energy E(v;) is understood to origi-
nate from the interactions among the segments that form
molecule /. Assuming for simplicity that the conformational
states of the molecule are discreet we may define

o~ EJKT
P (A2)
[2 e—E,/kT:|

14

as the intrinsic probability for the molecule to be found in
conformation v in the absence of any interactions with the
other molecules of the ensemble.

A further step of simplification is to assume that the
conformational states can be grouped into sets, with the
states in each set exhibiting identical molecule-molecule in-
teraction U, ;=U(S;,S;;w;,). These sets of conformations
are referred to as the shapes of the molecules and are denoted
by S;,5;. The set of distinct conformations associated with
the same shape S; is denoted by v(S,).

The intrinsic probability Pg of the shape S is given by
the sum of the intrinsic probabilities of all the conformations
that correspond to that shape, i.e.,

Pi=2> P
v(S)

(A3)

The intrinsic energy &g of the shape S is defined in terms of
the intrinsic probability according to
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e—sS/kT

S pres T ’
S’

Pi= (A3")

According to Egs. (A2) and (A3), &g is an effective free
energy whose relation to the energies E, of the conforma-
tions forming the set »(S) is given by

Eg=— kBT lnz e_E’/kBT.
v(S)

(A3")

The thermodynamic description of the fluid phases is based
on the approximate expression for the configurational free
energy

— F'INkgT = In| >, P} f dolyw) +%(N—1)ln<G>,
N

(A4)

which is obtained within the variational cluster method on
retaining only up to two-molecule cluster terms. In this ex-
pression {g(w) is the variational weight function for the
shape S. The interaction between a molecule in any confor-
mation of shape S; with another molecule in any conforma-
tion of shape §; is introduced through the function

Gs, s (@) = e VSrSron T, (AS)

where ;; denotes the relative positional and orientational
variables R;;,€);; of the molecular pair /,J. The angular
brackets in Eq. (A4) indicate ensemble averaging according
to

Gy= 2

5.8,

dwdw;ps(w)ps (0)Cs,s (wr;),  (A6)

using the single-molecule probability distribution function

ngs(w)
> Py, f do' {s/(w")
S!

ps(w) = (A7)

The variational weight function {¢(w) is determined self-
consistently by functional minimization of the free energy F’
leading to the condition

IR "
where
(Gsfa) =3 | dosps()Gs,s (wr,). (A9)
Sy

The pair distribution function in this approximation is given
by

P55 (@) = ps (@))ps (@) Gy s (0 JKG).  (A10)
According to Egs. (A4)—(A10), the equilibrium thermody-
namic properties and the molecular statistics within this ap-
proximation are completely specified in terms the intrinsic
probabilities Pg (or the effective free energies gg) of the vari-
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ous molecular shapes and their respective pair interaction
functions Gy, s (w;;) defined by Eq. (AS5). Both, P) and
Gs,5 (@), can be modeled to the required level of resolu-
tion by carrying out molecular-mechanics calculations on a
single molecule and on a molecular pair, respectively. Natu-
rally, the computational feasibility of this approach rests on
the possibility of grouping the (normally quite numerous)
molecular conformations into a small number of representa-
tive shapes. It should be noted that the important shapes are
not necessarily the ones exhibiting high intrinsic probabili-
ties Pg in isolation but rather the ones that acquire high prob-
abilities in the bulk phase of the interacting molecules. These
probabilities are given by

[ ot

> Py, f do' {g/(w")
SI

Py= f dwps(w) = : (A1)

and they clearly involve both, the intrinsic probability for the
shape S to occur in the absence of intermolecular interactions
and the average interaction of that shape with its environ-
ment in the bulk phase.

The symmetry of the phase is entered in the self-
consitency calculations through the assumed dependence of
the variational weight function on the positional and orienta-
tional variables w=(R;()). For the fluid phases of the
present study we have the following types of {s(w) func-
tional dependence according to phase symmetry:

e isotropic phases, for which {s(w) is independent of po-
sition and orientation,

* nematic phases, for which {¢(w) is independent of po-
sition,

e smectic phases, for which {¢(w) is independent of the
positional coordinates in the plane of the smectic layers,
and

e columnar phases, for which {s(w) is independent of the
positional coordinate along the columnar axis.

The lattice version of this approach merely introduces a
further computational simplification by replacing the full
position-orientation integrations indicated in Egs. (A4), (A6),
(A7), (A9), and (All) with summations over lattice points.
Clearly, this simplification allows for an analogously coarse
grained modeling of the molecular interactions and of the
geometry of the molecular shapes.
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