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A molecular model of cubic building blocks is used to describe the mesomorphism of conical

fullerenomesogens. Calculations based on density functional molecular theory and on Monte Carlo

computer simulations give qualitatively similar results that are also in good agreement with the

experimentally observed mesomorphic behaviour. The columnar and lamellar mesophases obtained

are non-polar, and their relative stability is controlled by a single model parameter representing the

softness of the repulsive interactions among the building blocks of the conical molecules.
1. Introduction

Conventional columnar liquid crystals (LCs) aremade of disc-like

molecules. Typically, these molecules have a flat rigid core with

peripherally attached flexible alkyl chains and they stack in

columns which self-organise in phases of three-, four- or six-

fold rotational symmetry about the column axis.1 Following the

discovery by Chandrasekhar et al.2 in 1977 of what today is

referred to as conventional low molar mass discotic mesophases,

a variety of novel columnar LC systems have been identified.

Their building blocks range from chiral molecules,3 inverted mol-

ecules,4 tapered molecules,5 half disc molecules,6–8 bowl-like9

(pyramidic,10 cone-shaped11)molecules, dendrimers12 and fullero-

dendrimers,13 symmetric-tapered molecules,14,15 hybrid organic–

inorganic polycatenar16 or multipode supermesogens17 and

conical (badminton shuttlecock) multiadducts of C60.18–20 From

the applications point of view, the general interest in columnar

LC phases1 is based on the versatility they offer for the control-

lable self-assembly of molecular entities into one-dimensional

arrays that can be ordered in the other two dimensions.

In columnar LCs formed by conical molecules, the stacking

within the columns can be strongly biased by their steric molec-

ular asymmetry. Accordingly, such LCs may exhibit physical

properties characteristic of polar or inversion asymmetric

media,21 such as ferroelectricity, second harmonic generation,

etc. In particular, the columnar mesomorphism in the case of

conical molecules with a fullerene apex18–20 appears to be driven

by a simple mechanism: the hollow cones self-assemble into

polar stacks, with the apex of each cone resting within the empty

conical part of its neighbour. The polar columns in turn self-

organise into LC columnar phases that, for all known systems,

do not exhibit any macroscopic polarisation.

In this paper,motivated by the experimental observations18–20,23

of stable LC columnar phases of fullerenemultiadducts of conical

shape, we study, by molecular theory and Monte Carlo (MC)

molecular simulations, the phase behaviour and the molecular

organisation of model fullerene-containing hollow cones. In the

next section we introduce a general way of coarse-grainmodelling

of complex molecular architectures together with the statistical
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mechanical theoretical framework for the exploration of possible

order–disorder phase transitions. In the same section we present

and discuss the calculated phase behaviour and the corresponding

molecular organisation of the model cone molecules. In section 3

we outline theMC computer experiments andwe analyse the find-

ings. The conclusions from the combined theory-simulation study

are drawn in section 4.
2. Molecular modelling and analytical calculations

To formulate the intermolecular potential we follow the block

model approach that has been introduced recently22 and has

been applied successfully to the study of the liquid-crystalline

polymorphism and the molecular organisation of a variety of ful-

lerene-containing molecular architectures. In this coarse-grained

representation, the dominant molecular shape (or shapes, in the

case of flexible molecules) is built from a number of equal size

cubic blocks of side length equal to the effective diameter of a ful-

lerene molecule. To account for the submolecular partitioning

into chemically distinct parts, different kinds of blocks are to

be used. In the case of the conical molecules considered here

(Fig. 1a) the molecular cone consists of bn ¼ 25 building blocks:

one block corresponds to the fullerene unit (f-block) and 24

blocks build up the grafted addends (m-blocks) in the way shown

in Fig. 1b. To simplify the calculations we assume that the over-

all coarse-grained molecular structure is restricted to translate

and rotate in a cubic lattice. The lattice constant coincides with

the size of the cubic blocks.

For the block–block interactions, it is assumed that two

building blocks belonging to different molecules interact only

upon simultaneous occupation of the same lattice site. The inter-

molecular interaction potential of molecules I and J is then the

sum of block–block interactions,

UIJ ¼
X
bI ;bJ

ubI ;bJdðRbI ;bJÞ (1)

where the argument of the d-function, RbI
,bJ, denotes the distance

of blocks bI and bJ, and ubI,bJ is the intermolecular potential of

a pair of blocks; the block index, b, can be either f or m. For

the calculations presented here we have chosen uf,f ¼ uf,m ¼ N

and um,m ¼ u, with u a positive parameter expressing the strength

of the repulsive potential between two m-blocks. According to
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Fig. 1 (a) Space-filling representation of the chemical structure of a con-

ical ‘‘badminton shuttlecock’’ molecule19 consisting of a C60 fullerene

apex and five aromatic groups attached around a pentagon of the fuller-

ene. (b) Block representation of the same molecule. The black block

corresponds to the fullerene unit and the light grey blocks to the addend

groups. The molecular axes are also shown.
the above parameterisation, a fullerene, f, block is impenetrable

by any block while two mesogenic, m, blocks can occupy the

same space albeit at the expense of an increase in the interaction

energy by u. It should be noted that certain strongly interdigita-

ting molecular pair configurations yield vanishing values for the

intermolecular potential in the particular block representation

of eqn (1). Cross-sections of these configurations are shown in

Fig. 2. Since such configurations are highly unlikely to occur in

the real systems, they are completely suppressed in the calcula-

tions by assigning to them additional high values for the intermo-

lecular potential. However, the inclusion of these configurations,

with the intermolecular energy derived directly from eqn (1),

does not change the final results appreciably.

In the geometry adopted for the present model, the grafted

addends are assigned a length lg ¼ 2
ffiffiffi
2

p
l0, with l0 denoting the

size of the cubic blocks. Setting the latter equal to the fullerene

diameter, l0 z 9 Å, leads to lg z 25 Å, which is a reasonable

estimate for the fully extended conformations of the addends.

However, the volume assigned collectively to the addends of a

single molecule (24 out of the 25 blocks) cannot be considered

as a hard-body excluded volume but rather as an effective

volume that is accessible to them on account of their flexibility

and the possible softness of their repulsive interactions. In other

words, the purely steric total volume of the addends of a single

molecule is less than 24 times the fullerene steric volume.

The analytical results for the phase behaviour and for the

single-particle distribution function in the various phases are
Fig. 2 Cross sections of interdigitating configurations of molecular pairs

for which the block–additive interaction potential in eqn (1) vanishes.

Gray and black tones are used to distinguish between blocks belonging

to different molecules.
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based on an approximate, Onsager-type, expression for the

Helmholtz free-energy density functional21,22 of the form

�FNkBTzln
Ð
d6Izð6IÞþ

þ1
2
ðN � 1Þln

Ð
d6I

Ð
d6Jrð6IÞrð6JÞ

�expð�UIJð6I;6JÞ=kBTÞ
(2)

Here, the collective variable 6 h (RI, UI) denotes the mole-

cular position RI and orientation UI, z(6I) is the variational

weight function of molecule I and r(6I) ¼ z(6I)/
Ð
d6Iz(6I) is

the single-molecule position-orientation distribution function.

Due to the restriction of the rotations and translations to a cubic

lattice, all the integrations in the above expressions reduce to

summations over the lattice points.

Given the number density �r ¼ N/V, (number N of particles

over the volume V) and temperature T (or, equivalently the

dimensionless parameter u/kBT, with kB denoting the Boltzmann

constant) we calculate the single-particle distribution r(6I)

from the variational self-consistency equations imposed on the

free-energy functional.22 The symmetries of the sought solutions

correspond to the isotropic, nematic, orthogonal smectic and co-

lumnar phases. Having obtained the single-particle distribution

it is straightforward to calculate the free energy, the pressure

and the chemical potential at any given density and temperature.

Phase boundaries in the pressure–temperature and/or the

density–temperature planes are then calculated from the coexis-

tence conditions obtained by equating pressures and chemical

potentials of the coexisting phases.

Introducing the dimensionless pressure p* (hPv0/u) where v0 is

the volume of a building block, we present in Fig. 3a and 3b the

calculated transition pressures and the coexistence densities,

respectively, as functions of u*h u/kBT. The dimensionless para-

meter u* can be read either as a measure of the addend m-block

hardness (impenetrability) or as an inverse temperature of the

system. All the phase transitions are found to be of first order,

with the density jump at the columnar–isotropic phase transition

being considerably larger thanboth the corresponding jumpat the

smectic to columnar transition and the very small density jump at

the isotropic to smectic phase transition. Crystal phases are not

explicitly included in the calculations, and therefore the columnar

and smectic phases persisting in the high pressure (or density) ends

of the calculated phase diagrams in Fig. 3 would in fact be

pre-empted by respective crystal phases. It is also worth noting

that the conical shape of the molecules becomes less restrictive

to their packing as the values of the interaction parameter u*

decreases since, in that case, the energetic cost for the molecular

addends to occupy the same space becomes small.

Regarding the relevant range of u*, the phase diagrams in

Fig. 3 suggest that systems for which a direct isotropic–columnar

transition is observed experimentally19,20 correspond to u* > 0.1.

On the other hand, as shown very recently by Zhong et al.,23

a suitable chemical modification of the five addend branches

and the insertion of a methyl group at the centre of the molecular

cavity, retaining the overall molecular architecture, may lead to

lamellar phases over a wide range of temperatures. Interestingly,

this type of molecular organisation is predicted by the calculated

phase diagram in Fig. 3, indicating that our simple model is

capable of reproducing the experimentally observed lamellar orga-

nisation when u* < 0.1. Viewing the interaction parameter u* as

a measure of the hardness of the conical periphery, it follows that
This journal is ª The Royal Society of Chemistry 2008



Fig. 3 Calculated phase diagrams using the free-energy functional of

eqn (2). (a) Pressure and (b) coexistence densities at the transition vs.

scaled inverse temperature u*.

Fig. 4 Calculated two-dimensional density profile, rt(x, y), of the

fullerene blocks at p* ¼ 5 and u* ¼ 0.3.
there is a critical hardness above which the lamellar molecular

organisation is destabilised in favour of the columnar.

The calculated single-particle distribution function in the

lamellar phase shows that the periodic layers are three blocks

thick and apolar. This corresponds to a microsegregated struc-

ture where the molecules, packed with their cone axis normal

to the layers, form successive fullerene-rich and mesogen-rich

sublayers of thickness equal to one and two block-lengths,

respectively. Clearly, this packing motif implies considerable

overlapping of the volumes assigned to the mesogenic blocks

of adjacent molecules, which explains why it is obtained only

for small values of the ‘‘hardness’’ u*.

The orientationally-averaged two-dimensional density profile

of the fullerene units on a plane perpendicular to the columns

is defined by rt(x, y) h
Ð
dzdUr(6). Representative profiles of

rt are shown in Fig. 4 for p* ¼ 5 and u* ¼ 0.3. At these thermo-

dynamic conditions, according to Fig. 3a, the system is well

within the region of stability of the columnar phase. It is clear

from this plot that the columns are organised in a two-dimen-

sional orthogonal lattice with unit-cell lattice constants dx ¼ dy
¼ 5. Comparison of the unit-cell lengths with the molecular

dimensions indicates that there is no appreciable inter-columnar

lateral overlapping. Furthermore, these lattice constant values

persist in the entire temperature range of the columnar phase,

even close to the I-Col coexistence line. Notably, columnar
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phases with unit cells larger than 5 � 5 are obtained but these

solutions correspond to densities within the isotropic–columnar

coexistence region of Fig. 3b.

Strictly speaking, the positional organisation of the fullerene–

mesogens in the plane perpendicular to the columns is forced to

a rectangular columnar ordering due to the imposed cubic lattice

restrictions on the positions of submolecular blocks. In other

words, the axis parallel to the common orientation of the

columns can only be a C4 or a C2 symmetry axis and therefore

the only two-dimensional positional order allowed is of rectan-

gular symmetry. This makes it impossible to distinguish between

hexagonal and rectangular columnar phases within the present

lattice model. However, the phase behaviour of the system, in

particular the phase boundaries of the columnar phase to the

isotropic or to the smectic phase, is not expected to be severely

influenced by this limitation since the free-energy difference

between a hexagonal and rectangular columnar phases is expected

to be rather low17 compared to the difference between the colum-

nar (rectangular or hexagonal) and isotropic phase free energy.

3. Monte Carlo simulations

To obtain the exact phase behaviour for the molecular model of

the previous section and to gain deeper insight into the molecular

organisation, we have executed a series of Monte Carlo (MC)

simulations employing the intermolecular potential that we

used for the analytical calculations. Working in the constant

volume (NVT) ensemble, we place N particles in an orthogonal

box that contains M ¼ NxNyNz cubic lattice sites. Standard

periodic conditions are applied. A typical run at a given density

and temperature consists of approximately 106 equilibration MC

cycles followed by 106 to 107 MC production cycles. In a MC

cycle each particle makes on average one attempted move.

3.1 Hard particles

In the limit u* / N, the particles behave as impenetrable hard

objects and the phase transitions are driven by entropy. The ther-

modynamically most stable molecular organisation, at a given

density, is determined from the balance between translational

and orientational entropy. Themolecular cones are taken to inter-

act with the potential of eqn (1) but with uf,f ¼ uf,m ¼ um,m ¼ N.

Constant volume MC simulations (M ¼ 30 � 62 � 28) were

employed for a series of packing fractions h ¼ Nbn/M, where
Soft Matter, 2008, 4, 493–499 | 495



bn ¼ 25 is the number of building blocks per molecule. Starting

from a highly ordered tetragonal columnar phase, with packing

fraction close to one, we progressively lower the density of the

system by removing at random, from the last equilibrated config-

uration, a number of cones.

The nematic orientational order parameter is defined as S ¼
max{SXX, SYY, SZZ}, where SAA ¼ h3(z � A)2 � 1i/2, with the

unit vectors z and A corresponding, respectively, to the principal

molecular axis and to any of the macroscopic axes X, Y, Z.
Fig. 5 (a) The orientational order parameter S obtained from the MC

simulations as a function of the packing fraction h of the system. (b,c)

Typical snapshots for hard cone molecules taken in the isotropic and

the columnar phases.
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Furthermore, the director, n, of the phase is taken to coincide

with the axis of the box-frame along which we get the maximum

value S. The calculated orientational order parameter is given in

Fig. 5a as a function of the packing fraction of the system. Three

distinct regions, corresponding to different states of the system,

are apparent from this plot. At low densities and up to h ¼
0.65 the system is orientationally isotropic. For packing fractions

higher than 0.80 the system exhibits high ordering. In the inter-

mediate range, 0.65 < h < 0.80, the orientational order parameter

increases nearly linearly with density. Within this range of h, the

system is probably in the two-phase (isotropic and columnar)

coexistence region. The system appears overall apolar since the

polar order parameter P ¼ hzi vanishes in the entire density

range. Notably, initial configurations with perfect polar order

are found to relax to an apolar columnar phase after sufficiently

long runs, even for packing fractions near the maximal value.

Although the orientational order parameter S together with

visual inspection of snapshots of the simulated systems (see

Fig. 5b and 5c) confirm the columnar organisation of the high

density phase, we have calculated a series of pair-correlation func-

tions in order to probe further the molecular organisation of the

ordered phase. Taking the macroscopic Z-axis to coincide with

the director of the phase, the two-dimensional density profile of

the system is obtained through the pair-correlation function

f(x, y) ¼ hd(x � xIJ)d(y � yIJ)i/f(id)(x, y) (3)

This gives the probability to find a pair of molecules with

the interconnecting vector of their apexes having projections

(x, y) in the plane perpendicular to the columns. In eqn (3) f(id)

(x, y) is the same probability density for the non-interacting

system at the same density. A plot of the above density distribu-

tion calculated at h ¼ 0.838 is given in Fig. 6a, from which it is

apparent that a phase is formed having long range two-dimen-

sional positional order with rectangular symmetry and lattice

constants dx¼ dy ¼ 5. Before terming this phase as liquid crystal-

line it should be checked whether the system exhibits long-range

positional order along the columnar axis. This is achieved by

calculating the positional correlations along this axis through

the density function

fk ¼ hd(z � zIJ)i/fk(id)(z) (4)

The calculated fk (z) exhibits only noise fluctuations about

a constant value, indicating the absence of long-range positional

correlations throughout the studied range of densities.

To quantify the coupled orientational–positional correlations

among molecules that belong to the same or different columns,

we have calculated the orientation-dependent pair-correlation

function gq (rt) defined as

gq (rt) ¼ hd(r � rt;IJ)cosqIJi/hd(r � rt;IJ)i (5)

where rt;IJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2IJ � ðrIJnÞ

2
q

and cosqIJ¼ zI� zJ. InFig. 6bweplot

the calculated function gq (rt) at h ¼ 0.838. The value of gq (rt)

at rt ¼ 0 gives the intracolumnar orientational correlations.

Clearly each column is highly polar with nearly 86% of the cones

pointing in the same direction but the phase is overall apolar, in

accordwith the analytical results.Notably, the intercolumnar polar
This journal is ª The Royal Society of Chemistry 2008



Fig. 6 Plots of (a) the simulated density function f(x, y) of eqn (3) show-

ing the positional correlations of the fullerene units for hard cones and

(b) the simulated orientational correlation function gq (rt) of eqn (5)

for hard cones at h ¼ 0.838.

Fig. 7 (a) Plot of the simulated orientational order parameter S as

a function of the interaction parameter u* (cooling: squares, heating:

open circles). (b,c) Typical snapshots for soft cone molecules correspond-

ing to the isotropic and columnar phases.
orientational correlations are seen in Fig. 6(b) to vanish already at

first neighbour distances, indicating the absence of polar domains

beyond a single column.

Despite the fact that theory overestimates both, the transition

pressure and the density jump at the transition, a known draw-

back of the Onsager-type free-energy functionals, the results of

the simulations confirm the basic theoretical predictions accord-

ing to which 1) in the limit of hard interactions only two liquid

phases, an isotropic and a liquid-crystal columnar, are involved

in the phase sequence of the system 2) columns are formed by

directional molecular stacking, therefore exhibiting high pola-

rity and 3) the columnar phase, although composed of polar

columns, is overall apolar.

3.2 Soft cones with hard apex

To study how the softness of the conical periphery influences the

phase behavior of the systemwe have run a set of constant volume

simulationswherewe vary gradually the interaction parameter u*.

The density range was chosen so as to yield thermodynamically

stable columnar phases at high values of the interaction parameter

u* (equivalently, at low temperatures). Thus, guided by the results

of the previous section for hard cones, we focused our calculations

on systems with h > 0.8.
This journal is ª The Royal Society of Chemistry 2008
Here we present results for a system at density h ¼ 0.8295 to

which we have applied both, cooling and heating sequences.

The simulation box containsM¼ 30� 62� 28 cubic lattice sites;

at the specified density this corresponds to N ¼ 1728 molecules.

In a cooling run we start from a high temperature and a well
Soft Matter, 2008, 4, 493–499 | 497



Fig. 8 Calculated mean potential energy per particle, in units of the

interaction strength u, as a function of the interaction parameter u* (cool-

ing: squares, heating: open circles).
equilibrated isotropic state of the system and decrease the

temperature gradually. In heating runs, we start from a perfectly

ordered state and increase the temperature in small steps. In both

cases, the final equilibrated configuration of the system for each

temperature is used as the starting configuration for the next

simulated temperature.

In Fig. 7a we present the evolution of the orientational order

parameter S as a function of the interaction parameter u*,

obtained for cooling and heating runs. Obviously the system

exhibits a sharp order–disorder phase transition at u* z 0.8.

Snapshots of the simulated phases at high temperatures (low

interaction parameter) and at low temperatures (high interaction

parameter) reveal, respectively, the isotropic and the columnar

organization of the system (Fig. 7b and 7c). Furthermore, the

small observed hysteresis is indicative of the first-order nature of

the transition. The analysis of themolecular organisation in terms

of the pair-correlation functions, introduced in the previous

section through eqn (3)–(5), leads to similar conclusions concern-

ing themolecular organisation in the columnar phase: the phase is

overall apolar, consisting of highly polar columns that slide one

beside the other, thus preventing the development of appreciable

long-range positional correlations along the column axes.

In contrast to the case of hard body interactions, the softness

of the conical periphery allows for intermolecular overlaps (two

addend blocks belonging to different molecules may occupy the

same space). As a measure of the mutual overlap, we have calcu-

lated U*h hU/ui/N, i.e. the average potential energy per particle

in units of the interaction strength u. The results are plotted in

Fig. 8, from which it becomes apparent that, at high tempera-

tures in the isotropic phase, more than four molecular blocks

on average share the same space with addend blocks of other

molecules while in the columnar phase this number vanishes,

indicating the absence of molecular overlapping.

4. Conclusions

Wehave used a simplifiedmolecularmodel of cubic building blocks

to describe the mesomorphism of conical fullerenomesogens. As

the same type of block model has been applied successfully to
498 | Soft Matter, 2008, 4, 493–499
fulleromesogens of various other architectures,22 the present study

constitutes a further test of this model, this time against the exper-

imentally observed19,20,23 mesomorphic behaviour of fullerene

‘‘badminton shuttlecocks’’.

Applying Onsager-type density functional theory and MC

computer simulations, we studied the phase behaviour of the

block–model conical fulleromesogens. Both, analytical calcula-

tions and computer simulations, give qualitatively similar results

that are also in good agreement with the experimentally observed

phase sequences.

Theory and computer simulations indicate that the formation

of thermodynamically stable columnar mesophases of conical

fulleromesogens is entropically driven, although molecular poly-

philicity plays a synergetic role in the stabilisation of the columnar

phase over the isotropic. For fixed geometrical characteristics of

the molecular cone shape, a single model parameter, combining

temperature with softness of the repulsive interactions among

molecular segments, is found to control the order–disorder phase

transitions as well as the relative thermodynamic stability of the

lamellar over the columnar molecular ordering.

Despite the strongly polar shape of the molecules and the

strongly polar local ordering identified in both the theoretical

calculations and the molecular simulations, the stable meso-

phases are found in all cases to be macroscopically apolar.
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