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An intermediate nematic phase is proposed for the interpretation of recent experimental results on
phase biaxiality in bent-core nematic liquid crystals. The phase is macroscopically uniaxial but has
microscopic biaxial, and possibly polar, domains. Under the action of an electric field, the phase
acquires macroscopic biaxial ordering resulting from the collective alignment of the domains. A
phenomenological theory is developed for the molecular order in this phase and for its transitions to
purely uniaxial and to spontaneously biaxial nematic phases. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2897993�

I. INTRODUCTION

Since their theoretical prediction,1 biaxial nematics have
been a constant challenge in liquid crystal �LC� research.2–15

They differ from the common, uniaxial, nematics in that they
exhibit additional orientational order of the molecules along
a second macroscopic direction, the “short” axis m, perpen-
dicular to the primary nematic director n. The expectation
that the response of m to an applied electric field could be
much faster than that of n has been sustaining a constant
practical interest in low molecular mass biaxial thermotropic
nematic LCs �i.e., the biaxial analogs of the conventional
nematic LCs used in electro-optic applications�. However, it
was only recently that strong experimental evidence has been
produced for the discovery of such biaxial nematics, first in
bent-core systems16–18 and shortly afterward in laterally sub-
stituted tetrapode nematogens.19

Subsequent electro-optic switching experiments20 on the
bent-core biaxial nematics demonstrated that the response of
m to an applied field is indeed much faster than that of n.
Interestingly, the interpretation of these switching experi-
ments suggests �a� the existence of a high temperature
uniaxial nematic phase with practically no biaxial response
to an applied electric field and �b� a transition to a low tem-
perature nematic phase which is optically uniaxial and can be
brought to a biaxial state by applying an electric field per-
pendicular to n. As the electric fields involved �a few V /�m�
are too low to produce a substantial effect directly on the
orientations of individual molecules, it is reasonable to at-
tribute the field-induced biaxial state to the preferential
alignment of the m axes of pre-existing biaxial molecular
aggregates �domains or clusters� which, in the absence of an
applied field, are uniaxially distributed about n. Electric
fields of similar strength have been used to switch the m
director in the x-ray diffraction �XRD� experiments of Ref.
17.

The spinning-sample NMR experiments in Ref. 16 do
not involve electric fields but there, the strong external mag-

netic field H, when not collinear with the n director, would
orient the m axis �here identified with the direction of small-
est diamagnetic susceptibility of the phase� perpendicular to
the plane formed by n and H. Consequently, it is possible
that the static sample consists of biaxial domains with their
m axes uniaxially distributed about a common n director
�parallel to H� and that a macroscopic alignment of the do-
main m axes results from spinning the sample about an axis
perpendicular to H.

Recent atomistic simulations of nematics made of bent-
core molecules21 indicate the existence of biaxial domains.
In general, such domains exhibit dielectric as well as dia-
magnetic biaxiality and would therefore be readily oriented
by external fields. In fact, the domains in Ref. 21 exhibit
local ferroelectric �i.e., biaxial and polar� nematic ordering.
This endows the domains with a net electric polarization
which could also macroscopically orient them in an external
field. Dielectric fluctuation studies in the uniaxial nematic
phase of bent-core liquid crystals suggest the formation of
cybotactic �smectic-like� clusters22 and, in one instance,23

randomly oriented nanodomains of anticlinic ferroelectric or-
dering are proposed for the structure of an optically isotropic
phase obtained upon cooling from the nematic. Cybotactic
biaxial clusters are clearly identified in XRD studies of ca-
lamitic multipode nematics for which the low temperature
phases are columnar.24 Lastly, molecular dynamics simula-
tions of transverse switching in biaxial nematics by an elec-
tric field25 suggest that the switching mechanism involves the
reorientations of localized biaxial domains, with intermediate
disruption of the long-range biaxial ordering. The above con-
siderations suggest that the existence of uniaxial phases with
biaxial clusters and the possibility of field-induced alignment
of the clusters might be of key relevance to understanding
phase biaxiality in thermotropic nematics. Notably, the exis-
tence of locally ordered structures has been invoked in the
description of liquid-liquid phase transitions.26

An alternative way to view the aligning effect of the
external field is in terms of the orientational fluctuations of
m. The hypothesis that these fluctuations are extensive
enough to destroy the spontaneous long-range alignment ofa�Electronic mail: a.g.vanakaras@upatras.gr.
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the m axis has been used2 as a possible explanation as to
why thermotropic biaxial nematics are not commonly ob-
served in experiments. On the other hand, in analogy with
what is known from the elastic continuum theory of uniaxial
nematics,27 the application of an external field would quench
the low wave-vector orientational fluctuation modes of the m
axis. Thus, a possible interpretation of the observed field-
induced transition to a biaxial state is through the quenching
of the low-energy orientational fluctuation modes. However,
estimates of cluster sizes and time scales of their reorienta-
tional motions indicate that a continuum treatment of the
biaxial fluctuations may not be applicable. In any case, the
conventional static formulation of the free energy of the
nematic phase solely in terms of long-range orientational or-
der parameters refers to a uniformly ordered system and can
therefore convey neither the cluster nor the continuum fluc-
tuation picture. In this paper, we introduce a phenomenologi-
cal description that allows explicitly for nonuniformity of the
biaxial orientational order in a thermotropic nematic phase.
The formulation is based on the biaxial cluster picture, al-
lowing for a full range of cluster sizes, from single molecule
to macroscopic aggregates, thus avoiding the inherent size
limitations of a continuum treatment.

The model system and the order parameters on which
the phenomenological description is based are introduced in
Sec. II. The Landau–deGennes free energy expansion is for-
mulated and the different nematic phases it describes are
presented in Sec. III. The effects of an applied electric field
are studied in Sec. IV. The results of this work are summa-
rized and their significance and limitations are discussed in
Sec. V.

II. BIAXIAL CLUSTERS AND ORDER PARAMETERS

To identify the relevant order parameters in a phase with
local biaxial nematic order, we consider a nematic sample of
N molecules in a volume V at temperature T with the director
n perfectly aligned along the Z macroscopic axis. Practically,
the sample may be pictured �see Fig. 1� as filling the space
between parallel plates, with the Z axis defining the rubbing
direction that aligns the director n on the plate surfaces. The
X macroscopic axis is chosen to be perpendicular to the
plates. For simplicity, we further assume that the molecules
are themselves perfectly aligned with their major axis z par-

allel to the director n. This restricts the local biaxial m axis
and the molecular axes x, y to be perpendicular to the Z axis.
We also assume that the sample-confining surfaces have no
aligning influence on the m axis.

We assign to each molecule i=1,2 , . . . ,N in the sample
a traceless second rank molecular tensor q̈i which, in the
principal frame of molecular axes xi ,yi ,zi �Z, may be taken to
have the components qxx

i =−qyy
i =1 and qzz

i =0. Long-range
biaxial order in the sample is described by the macroscopic
second rank tensor �q̈� representing the ensemble average
�denoted by the angular brackets� of the superposition of
these molecular tensors, defined by

q̈ �
1

N
	
i=1

N

q̈i. �1�

In its principal axis frame X ,Y ,Z, this tensor has the two
nonvanishing components �qXX�=−�qYY�=q. The quantity q,
which measures the extent of phase biaxiality, can be ex-
pressed as an ensemble average of the molecular orientations

q =
1

N
	
i=1

N

cos 2�i� , �2�

with �i denoting the angle of the molecular axis xi relative to
the principal axis m of the phase. The direction of the latter
axis is defined by the condition �	i=1

N sin 2�i�=0 and is iden-
tified with the X macroscopic axis. Obviously, 0� �q��1.
The rotationally invariant quantities that can be formed from
the components of �q̈� are the powers of the scalar product
�q̈� : �q̈���qAB��qAB�=2q2, with the indices A ,B , . . .
=X ,Y ,Z denoting Cartesian tensor components and summa-
tion over repeated indices implied. Due to the assumed re-
striction of the molecular z axis along the macroscopic Z
direction, the higher order invariants �qAB��qBC��qCA�, �qAB�
��qBC��qCD��qDA�, etc., vanish.

Although a state of the sample described by the value
q=0 has no macroscopic biaxial order, it could consist of
domains in which the molecules are biaxially ordered. To
quantitatively describe this possibility, we consider an instan-
taneous grouping of the N molecules of the sample into a
number R��N� of clusters, each labeled by an index r and
containing nr molecules in a volume vr. The grouping, to be
specified in quantitative terms below, is understood to ob-
serve the internal connectivity of the cluster volumes and the
additivity of the cluster populations and volumes. Thus, the
variations of R, nr, and vr in the equilibrium ensemble are
subject to the additivity constraints 	r=1

R nr=N; 	r=1�
R vr=V.

For each cluster, an ordering tensor q̈�r� can be defined in
terms of the tensors q̈i associated with the molecules in the
cluster

q̈�r� =
1

nr
	
i=1

nr

q̈i. �3�

In its principal axis frame Xr ,Yr ,Zr �Z, the tensor q̈�r� has two
nonvanishing components that can be expressed in terms of a
single quantity q�r��=qXrXr

�r� =−qYrYr

�r� � measuring the biaxiality

FIG. 1. �Color online� Cross section of a nematic sample between two
parallel plates, illustrating the biaxial clusters; the double arrows indicate the
m axes of the latter. The plates are parallel to the YZ plane and their rubbing
directions, coinciding with the director n and the macroscopic Z axis, are
taken normal to the plane of the figure.
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of the orientational distribution of the molecules within the
cluster. Specifically,

q�r� =
1

nr
	
i=1

nr

cos 2�i;r, �4�

with �i;r denoting the angle of the molecular axis xi relative
to the principal axis Xr of the cluster. The latter axis is de-
termined by the condition 	i=1

nr sin 2�i;r=0 and is taken to
define the direction of the short axis m�r� of the cluster.
Clearly, �q�r���1 and the basic rotationally invariant that can
be formed from the tensor of a single cluster is q̈�r� : q̈�r�

=2�q�r��2.
From the assumed additivity of cluster populations and

from the definitions in Eqs. �1� and �3�, it follows that the
tensor q̈ can be simply expressed as the ensemble average of
a weighed sum over the cluster tensors q̈�r�, with cluster
weight wr�nr /N, i.e.,

q̈ =
	
r=1

R

wrq̈
�r�� . �5�

This relation leads to the following expression of the long-
range biaxiality measure q in terms of the cluster ordering
measures q�r� and the cluster orientations within the macro-
scopic sample,

q =
	
r=1

R

wrq
�r� cos 2�r� , �6�

where �r denotes the angle of the cluster short axis m�r�

relative to the macroscopic short axis m.
The validity of the expressions in Eqs. �5� and �6� is

independent of the particular way in which the sample is
partitioned into clusters. It is clear from Eq. �6� that the ab-
sence of macroscopic biaxiality in the sample can be due
either to the complete absence of local biaxial order
�q�r�=0� or to the statistically uniform �i.e., uniaxially sym-
metric about the Z axis� distribution of the m�r� axes of lo-
cally biaxial structures �q�r��0�. In other words, the defining
condition of a macroscopically uniaxial sample, q=0, is not
sufficient to differentiate between the presence and the ab-
sence of local biaxial ordering. However, to quantify such
differentiation, it is necessary to have a quantitative defini-
tion of the partitioning of each accessible microstate of the
sample into clusters.

In a continuum approach, the necessity for a quantitative
definition of the clusters is in effect bypassed as it is assumed
that each elementary volume dr of the sample contains a
large number of molecules, with local density ��r� and biax-
ial order tensor q̈�r� having principal value q�r� and local
axis m�r�. The macroscopic biaxiality tensor of Eq. �5� is
then given by q̈=1 /N
Vdr��r�q̈�r�, with principal values
�q ,0 and principal axis m. With ��r� denoting the angle of
the local axis m�r� relative to m, the principal value q is,
according to Eq. �6�, expressed as the spatial average q
=1 /N
Vdr��r�q�r�cos�2��r�� and the extent of local biaxial
order over the entire sample is quantified by the rotationally
invariant quantity

q2 =
1

2N
�

V

dr��r�q̈�r�:q̈�r� . �7�

Clearly, a macroscopically biaxial state, q�0, can only be
obtained if q2�0. In that case, ignoring fluctuations in the
density and in the local principal values q�r� by setting
��r��N /V and q�r���q2 throughout the sample, one has
q��q2�cos 2��, with

cos 2� �
1

V
�

V

dr cos 2��r� . �8�

Accordingly, in this approximation, q2 can be used as the
order parameter for the local biaxial order and cos 2� can be
used as the order parameter for the long-range biaxial order.
Lastly, the general quadratic form of the invariants that can
be obtained from q̈�r� is

G =� dr� dr�qAB�r�GAB;A�B��r,r��qA�B��r�� , �9�

where the fourth rank symmetric tensor GAB;A�B��r ,r�� can
be constructed from the position variables r ,r� and the local
principal axes m�r�, m�r��. In particular, choosing the form
GAB;A�B��r ,r����A,A��B,B���r���r−r�� gives the invariant
q2�0 of Eq. �7�, while the generic form GAB;A�B��r ,r��
���r���r��KAB;A�B�

CC� �C�C���r−r��, gives the various gradient
terms, which, for constant ��r� and q�r�, reduce to the biax-
ial analogs of the gradient terms in the elastic deformation
free energy of the uniaxial nematic continuum.27

To address the possibility of phase transitions between
uniaxial nematic phases differing in the local biaxial order,
one has to consider clusters containing a small number of
molecules, down to the limit of single-molecule “clusters.”
In this case, the continuum formulation, being based on clus-
ters containing a large number of molecules, becomes inad-
equate. On the other hand, the description of the biaxial or-
dering in a cluster solely in terms of the rotational invariant
�q�r��2, i.e., without cluster-size discrimination, runs into dif-
ficulties when cluster size is reduced. For example, a cluster
containing a single molecule has, according to Eq. �4�, the
same value, �q�r��2=1, with a cluster containing any number
of molecules in perfect biaxial ordering. For a physically
sensible description, it is therefore necessary to combine
cluster ordering q�r� with cluster size nr. A simple way to
achieve this, within the present simplified phenomenological
framework, is by defining the following rotationally invari-
ant quantity for each possible partitioning �r� of a microstate
of the sample into clusters:

	�r� =
1

N − 1	
r=1

R

�nr�q�r��2 − 1� . �10�

Obviously, 	�r� depends on the size of the clusters and their
degree of internal biaxial ordering. It strictly vanishes if each
cluster contains a single molecule �nr=1; R=N� and takes the
highest possible value 	�r�=1 if the sample consists of a
single cluster containing all the N molecules �nr=N; R=1�
with their axes x ,y perfectly aligned along X ,Y, respectively.
Clusters consisting of uniaxially distributed molecules
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�q�r�=0; nr
1� contribute negative values to 	�r� while for a
sample consisting of R perfectly ordered clusters �i.e., q�r�

=1 for r=1,2 , . . . ,R�, Eq. �10� gives 	�r�= �N−R� / �N−1�.
Denoting by 	�r̃� the maximal value that can be obtained

from Eq. �10� for any of the different possible ways of par-
titioning the given microstate of the N ,V ,T ensemble into
clusters, one may define the cluster order parameter 	 as the
ensemble average 	��	�r̃��. It follows directly from Eq.
�10� that, for the maximization of 	�r�, two adjacent clusters
with respective tensors q̈�r�, q̈�r�� and molecular populations
nr, nr� will merge into a single cluster of nr+nr� molecules if
1
2 �q̈�r�− q̈�r��� : �q̈�r�− q̈�r����1 /nr+1 /nr�. The reversal of this
inequality states the condition for a cluster to be divided into
two smaller clusters. Clearly, 0�	�1 and, according to its
definition and Eq. �10�, the order parameter 	 will acquire
nonvanishing values only if �	r=1

R wr�q�r��2�
1 /n, with n
�N / �R� denoting the average cluster size in the ensemble.
Therefore, in a thermodynamic state favoring small and not
strongly biaxial clusters, the vanishing of 	 does not exclude
the possibility of long-range biaxiality with order parameter
�q��1 /n. On the other hand, in states favoring sufficiently
large clusters �n�1�, the order parameter 	 tends to the
invariant q2 in Eq. �7� and, therefore, the continuum descrip-
tion can be applied in this case.

III. PHENOMENOLOGICAL FREE ENERGY
EXPANSION

With 	 and q taken to be the basic order parameters
associated with biaxiality in the clusters and in the macro-
scopic sample, respectively, a phenomenological Landau–
deGennes expansion of the free energy can be formulated in
terms of powers of 	, q2, and of contributions from possible
interactions with external fields. The electrostatic interaction
of the biaxial medium with an applied electric field E, taken
to have components EX=E, EY =EZ=0, is conveyed to lowest
order in q by the rotationally invariant term hE · �q̈� ·E
=hE2q, where the scalar factor h reflects the magnitude of
the molecular polarizability anisotropy in the x ,y molecular
plane. Accordingly, the leading terms in the expansion of the
free energy per molecule, in the presence of an external elec-
tric field will be

F = a	 +
b

2
	2 +

g

3
	3 +

c

2
q2 +

d

4
q4 − e	q2 − hE2q . �11�

Considering 	 as the primary order parameter, the coefficient
a is taken to be an increasing function, a�T�, of the tempera-
ture. The other coefficients b ,c ,d ,e ,h ,g are assumed to be
insensitive to variations of temperature and positive, with the
exception of b, for which both signs are considered. The c
and d terms are dominated by the entropic drop associated
with the long-range biaxial ordering and the e term conveys
the mutual favoring of the local ordering of the individual
clusters �	� and of their collective ordering �q�. The interac-
tions among adjacent clusters are assumed in this expansion
to be adequately described in terms of 	 and q.

In the absence of an external field �E=0�, the free energy
in Eq. �11� describes three possible nematic phases: �i� A
high temperature “proper” nematic phase �Nu�, in which 	

=q=0; �ii� an intermediate, macroscopically uniaxial, nem-
atic phase �Nu

�bc�� formed by uniaxially distributed biaxial
clusters �bc�, in which 	
0 and q=0; �iii� a low tempera-
ture, macroscopically biaxial, phase �Nb

�bc�� formed by
aligned biaxial clusters, in which 	
0 and q�0. Depending
on the sign of the coefficient b, the Nu↔Nu

�bc� phase transi-
tion can be of first order �for b�0� or second �for b
0�.

The transition to the Nb
�bc� phase is controlled by the val-

ues of the parameters 
=2cg /3�b�e and u=2e2 / �b�d. For 



1, the transition to Nb
�bc� occurs from the intermediate Nu

�bc�

phase and is of the first or second order, depending on
whether u is, respectively, larger or smaller than 1+3
 /2.
For 
�1, the Nu

�bc� phase is removed from the sequence and
a direct, first order, Nu to Nb

�bc� phase transition is obtained. A
thorough presentation of the dependence of the phase dia-
gram on the possible values of the expansion coefficients is
given in Ref. 28. Here, we focus our attention on the com-
bination b�0 and 
 slightly above 1, which, as shown be-
low, is directly relevant to the observed biaxial electro-optic
response of the bent-core nematics and to the associated
nematic-nematic phase transitions.20 In this case, the first
order Nu↔Nu

�bc� phase transition is obtained at a�T�=a*

�=3b2 / �16g�� and the cluster order parameter undergoes a
jump from 	=0 to 	=	*�=3�b� / �4g��1�. The transition
from Nu

�bc� to Nb
�bc� is obtained as 	 increases beyond a critical

value 	c�=
	*=c /2e�1�. Representative order parameter
profiles for these phases are depicted in Figs. 2�a� and 2�b�.

IV. FIELD-INDUCED NEMATIC BIAXIALITY

In the presence of an electric field �E�0� in the free
energy expansion of Eq. �11�, the uniaxial phases Nu and
Nu

�bc� acquire field-induced biaxiality. Near E=0, a measure

FIG. 2. �a� Plots of the temperature dependence of the calculated order
parameters for 
=1.05 and u=0.5; �b� as in the previous plot but for u
=0.75. The cluster order parameter 	 is expressed in units of 	c, the biaxi-
ality order parameter q in units of �c /d. The temperature function a�T� is
scaled by the constant a*=3b2 /16g.
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of the susceptibility of the system to field-induced biaxial
ordering is provided by the “electrobiaxial” coefficient
�k��q /�E2�E=0. In the Nu phase, the value of this coefficient

is fixed to kNu
=h /c, while in the Nu

�bc� phase, it varies with
	 �and therefore with temperature� according to kN

u
�bc�

=h /c�1−	 /	c�−1. Thus, the electrobiaxial susceptibility un-
dergoes a jump of h /c�
−1� at the Nu→Nu

�bc� transition. This
can be quite large in systems for which the 
 ratio is close to
1. In this case, a weak field could induce considerable biaxial
order to a uniaxial nematic phase if the latter is the Nu

�bc�.
The dependence of the biaxiality order parameter q on

the magnitude of the applied electric field is shown in the
diagrams of Fig. 3 for values of the temperature function
a�T� above and below the phase transition value a*. It is
apparent from the plots of q�a ,E� that near E=0 the effect of
the electric field is much stronger in the Nu

�bc� phase, where
the biaxial ordering is produced by the alignment of the bi-
axial clusters, compared to the Nu phase where the field di-
rectly influences the orientations of the molecules. As shown
in Fig. 3, the applied field can induce second order transi-
tions to the biaxial state of Nu

�bc�. In the case of Fig. 3�b�, this
transition is followed by a first order biaxial nematic-nematic
transition. The transition from a “parabiaxial” state of Nu to a
strongly biaxial state is seen to require much stronger fields,
in analogy with what is known for the respective uniaxial
paranematic to nematic transition.29 It is also apparent that at
constant applied field near E=0, the thermotropic transition
from Nu to Nu

�bc� is accompanied by a jump of two orders of
magnitude in the biaxiality q. A phase transition of this type,
reflected on the abrupt change in the biaxial response of a
uniaxial nematic phase to an applied field of a few V /�m,
has been experimentally observed20 in bent-core nematics.

The results regarding the application of an electric field

should be viewed within the practical limitations that the
assumed alignment of the director n imposes on the possible
magnitude of the applied field E. To actually maintain the
uniform orientation of n along the rubbing direction �Z axis�
of the plates for a nematic of positive dielectric anisotropy,
the field strength cannot exceed the critical value Ec for the
Fredericzs transition that reorients n along the Y axis. Appar-
ently, no such limitation applies for nematics of negative
dielectric anisotropy; in this respect, such systems would be
advantageous for the study of field-induced biaxial order in
the Nu

�bc� phase.
The presently available experimental data are not de-

tailed enough to permit a complete evaluation of the expan-
sion coefficients in Eq. �11�. Moreover, the simplified formu-
lation of the theory, particularly the restriction to perfect
uniaxial molecular ordering, does not warrant a direct quan-
titative comparison. Nevertheless, physically consistent esti-
mates can be made by comparing the theoretical predictions
with available results of measurements on bent-core
nematics.16,17,20 Thus, assuming that the scaled field strength
of E=0.05 at which the jump of the induced q is observed in
Fig. 3�b� corresponds to roughly 5 V /�m �which is about
half the critical field Ec for the Fredericzs transition�, we
estimate the scaling factor of E to be �a*c2 /2eh2�1/4

�100 V /�m. With the corresponding value of the induced
biaxiality in the Nu

�bc� set at the experimentally measured
magnitude q�0.1, the respective scaling factor estimate is
�c /d�1 /4. Combining these estimates with the values used
for 
 and u in Fig. 3�b� and the order of magnitude estimate
for the 	 scaling factor 	c�0.1, we obtain that g�7�b�,
16c�d�3e, and e��b�. A value for b can be estimated from
the scaling factor of E using h�10−38 Fm2 as representative
of the transverse molecular polarizability anisotropy for
strongly biaxial mesogens. This yields, in terms of
Boltzmann’s constant �kB�, �b� /kB�102 K.

V. DISCUSSION AND CONCLUSIONS

To summarize the results, three nematic phases are iden-
tified in the absence of an applied field: A purely uniaxial
phase, a spontaneously biaxial phase, and an intermediate,
macroscopically uniaxial phase consisting of biaxial clusters.
The application of an electric field of a few V /�m could
induce to this intermediate phase biaxial order of comparable
magnitude to that of the spontaneous phase and two orders of
magnitude larger than the field-induced order of the purely
nematic phase. The switching of the intermediate phase be-
tween an optically uniaxial and a biaxial state as well as its
possible transformation to a nematic phase �Nu�, in which the
application of the electric field does not induce a measurable
optical biaxiality, are in agreement with experimental obser-
vations on bent-core nematics.20

The above properties of the Nu
�bc� phase are not in con-

tradiction with the experimental observations of biaxiality by
NMR �Ref. 16� and XRD �Ref. 17� since in both cases an
aligning field, magnetic or electric, respectively, is present.
Furthermore, the induced nature of biaxiality suggested by
the present analysis is in agreement with the interpretation of
the texture transitions recently observed30 in electro-optic

FIG. 3. The dependence of the biaxial order parameter q on the strength of
the applied electric field for the systems in Fig. 2 and for two isotherms
a�T�=0.95 �solid line� and a�T�=1.05 �dotted line�. The electric field E is
expressed in units of �a*c2 /2eh2�1/4.

154512-5 Thermotropic biaxial nematic liquid crystals J. Chem. Phys. 128, 154512 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



experiments on a bent-core nematic. It is also worth noting
that the immergence of macroscopic biaxial nematic ordering
from the collective alignment �spontaneous or field induced�
of clusters is supported by the experimental observation of
biaxial order in nematic tetrapodes.19 There, the covalent lat-
eral grouping of the nematogen components into quartets
promotes the clustering which, in turn, enhances the biaxial
tendency relative to that of the nonbonded nematogens.

The free energy expression in Eq. �11� can be readily
extended to include the possibility of polar ordering within
the biaxial clusters. In close analogy with the formulation of
the 	 parameter, an additional order parameter is introduced
to describe the average magnitude of polar ordering within
the clusters in a direction transverse to n. The net transverse
polarity of the sample is quantified by means of a vector
order parameter �pA� that couples linearly ��pA�EA� to the
applied field and quadratically ��pA��pB��qAB�� to the biaxial
order parameter. The additional phases described by the
extended Landau–deGennes expansion include a macro-
scopically uniaxial nematic phase of biaxial and polar
clusters and a polar-biaxial nematic phase. Details on the
possible phase transitions and field-induced effects are given
in Ref. 28.

Here, the results presented are based on a simplified
formulation of the theory wherein perfect uniaxial nematic
order is assumed and, therefore, molecular rotations are re-
stricted in two dimensions. Consequently, any dependence
on the degree of uniaxial nematic ordering is suppressed.
Removal of this restriction makes the formulation more
elaborate and modifies the details of the phase transitions.
However, the essential findings regarding field-induced bi-
axiality and polar ordering are preserved. These findings of-
fer new insights into the nature of phase biaxiality and the
related nematic-nematic phase transitions and broaden the
current views on what could be considered as a “biaxial
nematic” LC for the purposes of electro-optic device appli-
cations. In particular, the possibility that some of the known
uniaxial nematics could, in fact, consist of uniaxially distrib-
uted biaxial clusters, suggests that it might be interesting to
study more closely the electro-optics of certain “uniaxial”
nematics, especially those with negative dielectric aniso-
tropy. As the possibility of fast, field-induced, switching be-
tween uniaxial and biaxial states provides a new concept for
the design of biaxial nematic devices, such studies might
also be of practical importance.
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