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Structural properties of polymer brushes tethered on a periodically nanopatterned substrate are investigated by
computer simulations. The substrate consists of an alternating succession of two different types of equal-width parallel
stripes, and the polymers are end-tethered selectively on every second stripe. Three distinct morphologies of the
nanopatterned brush have been identified, and their range of stability has been determined in terms of a single universal
parameter that combines the grafting density, the polymer length, and the stripe width. We propose scaling relations
for the average brush height and for the architectural properties of the outer surface of the nanopatterned brush under
good solvent conditions. Our analysis provides guidelines for fabricating well-defined and tunable nanopatterned
polymeric films.

Introduction

Surface-initiated polymer brushes1 have received considerable
attention over the past years, mainly because they offer a
promising way to modify, in a controllable fashion, a variety of
physicochemical properties of surfaces.1-4 For a given linear
polymer, statistically tethered on a specific substrate, the
key parameters one can use to control the equilibrium properties
of the system are the grafting density, the molecular weight, and
the solvent quality. Theoretical studies5-10 on the equilibrium
properties of such systems focus primarily on the mass distribution
of the polymer above the substrate and/or the distribution of the
free polymer ends. Predictions based on these considerations,
usually in the form of general scaling relationships, are in
qualitative agreement with experimental11-18 and computer
simulation19 findings. They offer clear insight into how film
morphology depends on experimentally controllable parameters

such as molecular weight, grafting density, solvent quality, and
chemical affinity between polymer and substrate. The situation
becomes rather complex when one moves from single-component
linear flexible polymers to polymer mixtures or when the tethered
macromolecules have higher architectural complexity, as in the
cases of grafted copolymers,2 dendrimers,20,21 or star-like
polymers.2 In these cases, the design parameters should include
partial molecular weights in the case of grafted copolymers,
the composition in the case of polymer mixtures, the generation
in the case of dendrimers, or the number of arms in the case of
star-like polymers.

Going beyond homogeneous polymer grafting to, for example,
substrates subdivided into regions with distinct grafting properties,
many interesting properties concerning the morphology of the
polymeric layer are expected. Wenning et al. have shown22 that
even local inhomogeneities of the grafting density may cause
significant changes of the polymer distribution across the grafting
surface. Recently, Patra et al., have studied by computer
simulation23,24 and experiment25 the structural properties of
polymer brushes tethered selectively on well-defined regions of
nanopatterned surfaces. Also, Daoulas et al. have investigated
the self-assembly of a lamella-forming blend of a diblock
copolymer on a periodically patterned substrate.26 The results of
the above works indicate that tethering polymers onto prepatterned
substrates may lead to hybrid surfaces with novel morphologies
that depend critically on the symmetry and the length scale of
the substrate pattern.

The fabrication of nanopatterned polymer brushes relies, to
a large extent, on the control of the substrate patterns. Recent
advances in the nanostructuring of surfaces,27 based mainly on
nanolithographic and templating approaches, have provided such
specific substrates, capable to tether selectively polymer
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chains.28-35 In this context, the use of focused electron beams
for the selective deactivation of polymerization initiators on a
surface has led to fabrication of patterned polymer brushes with
a lateral resolution of 50 nm.28-31 Very recently, new patterning
methods33,34 such as nanografting, dip-pen nanolithography,
contact lithography, and atomic force microscopy lithography35

have produced surface motifs with resolution better than 10 nm.
Taking into account that the height of a typical polymer brush
lies in the range of a few up to several tens of nanometers,
interesting and possibly exploitable nanoscale phenomena are
expected when these two characteristic lengths are comparable.

In this work we study by means of Monte Carlo computer
simulations the equilibrium morphology of systems composed
of monodisperse linear homopolymers end-tethered on certain
domains of a periodically patterned substrate. We study a specific
class of grafting substrates that consist of two different types of
equal-width parallel stripes with alternating capability, due to
appropriate surface treatment, to tether the polymer chains. A
representative snapshot of the studied system is given in Figure
1. The stripes are assumed infinitely long and their width, ∆, is
the only parameter needed to describe this specific motif. We
have examined in detail the equilibrium morphology of the
patterned polymer brush as a function of the molecular weight
(contour length), the surface coverage (grafting density) of the
grafting stripes and the width of the stripes. The main body of
our results concerns good solvent conditions although preliminary
results of the same system under poor solvent conditions are also
presented.

Brush Model and Computational Details

We have adopted the lattice bond fluctuation Monte Carlo
(BFMC) method. The BFMC model for polymer chains has been
originally proposed by Carmesin and Kremer36 and has been
applied successfully to the study of structure and dynamics of
homogeneously end-grafted brushes.37-40 The BFMC method
has the typical computational advantages of lattice MC methods

while the asymptotic limit of scaling laws related to chain behavior
in the semidilute regime is achieved for relatively small chain
contour lengths. On the other hand much longer chains are needed
by off-lattice models41,42 to reproduce satisfactorily these scaling
laws. We adopted the parametrization of references 37 and 38
according to which each monomer occupies eight lattice sites of
a cubic lattice and the length of the allowed bond vectors
connecting two neighboring monomers may be any of 2,�5,�6,
3 or �10 lattice spacings. Hereafter all the lengths are measured
in units of the lattice spacing. The grafted polymer ends are
assumed rigidly attached to the surface, with each of them
occupying an area of s0 ) 2 × 2 since the closest distance of
any pair of tethered ends is two lattice spacings. Similarly,
nonbonded monomers are not allowed to approach closer than
two lattice spacings. To take into account the quality of the
solvent, we assume that each pair of nonbonded monomers
contributes an amount ε to the internal energy of the system
when their separation lies within 2 < rij e �6. When ε/kBT <
0 we implicitly impose poor solvent conditions while the athermal
condition ε/kBT ) 0 corresponds to a very good solvent;38 here
kB is the Boltzmann constant and T is the temperature.

The patterned substrate is modeled as a perfectly flat and
impenetrable rectangular surface of size Lx × Ly, on the xy plane
at z ) 0. It consists of 2m parallel domains (stripes) of equal
width ∆ () Lx/2m), with the direction of the stripes defining the
macroscopic y-axis. Polymer chains are allowed to tether at one
end on every second stripe. The initial configuration of a system
composed of K linear polymer chains of length N, is achieved
by random end-grafting of K/m polymers on each grafting stripe.
Since overlaps of the grafted ends are not allowed, the grafting
density (surface coverage), σs, of the grafted stripes is σs )
s0K/(m∆Ly). Obviously, a system with grafting density at the
grafting stripes, σs, has an overall surface coverage σ ) σs/2.

Results and Discussion

We have simulated more than 200 systems with polymer lengths
in the range 30eNe 100, with surface coverage of the grafting
stripes σs ) 0.05, 0.1, 0.2, 0.25 and with stripe widths in the
range 10 e ∆ < 500. Simulations of nonpatterned uniformly
grafted systems covering the above range of polymer lengths
and grafting densities were performed as well. The main body
of our simulation is devoted to systems under good solvent
conditions (ε/kBT) 0). In addition, we present preliminary results
for systems under poor solvent conditions (ε/kBT < 0). All the
simulations are for m)3 and Ly)100 and with periodic boundary
conditions in the x and y directions. In a single MC step, a
monomer is chosen at random and a random displacement is
attempted. On average, during a MC cycle we attempt one trial
displacement on each monomer of the system. In each simulation
the first 2 × 106 MC cycles are used for equilibration while
ensemble averages are calculated in the course of the next 3-5
×106 MC cycles. The length of these particularly long simulations
is at least 10 times longer than the calculated chain relaxation
time (in units of MC steps per monomer) in ref 37. Furthermore,
several averages, including brush height and its variance, were
monitored during the simulation runs to serve as a direct check
of equilibration. All these indicators were consistent with well-
equilibrated systems.

The monomer average density profile, φ(z;∆,N,σs), above the
grafting surface is a directly measurable distribution through
neutron reflectivity measurements.14-16 It contains important
information about the equilibrium properties of the brush, and
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Figure 1. Representative snapshot of the studied system. The width of
each grafting (yellow) and no grafting (green) stripe is ∆.
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its direct experimental realization serves as a critical test for both
theory and simulations of brushes. We calculate this profile as
φ(z;∆,N,σs) ≡ 1/A〈∑n)1

K ∑i)0
N δ(z- zi;n)〉; here, zi;n is the projection

of the position vector of the ith monomer of the nth polymer
chain on the z-axis, A is the surface area, and the brackets denote
ensemble average. For a uniformly grafted brush in a good solvent,
both theory and simulations predict that the density profile,
φu(z;N,σ) shows a typical parabolic dependence on z and a long
decaying tail at the end of the distribution.

In Figure 2 we present calculated density profiles φ(z;∆,N,σs)
for systems with N ) 60 and σs ) 0.1 on substrates of various
stripe widths. For comparison, we also plotted in the same graph
the density profiles φu(z;N,σ) of nonpatterned brushes with N )
60 and grafting densities σ ) 0.1 and σ ) 0.05. We note here
that the short ranged density oscillation very close to the grafting
substrate is due to the nature of the bond fluctuation model, as
explained in detail in ref 37. From this plot, some first conclusions
can be drawn: (i) When ∆/N < 1, i.e., chains with contour length
shorter than the stripe width, the patterned brush exhibits a density
profile that is very similar to the corresponding profile of a
homogeneously grafted brush with grafting density σ () σs/2).
This similarity suggests that the space above the uncovered stripes
is well populated with monomers and the effect of the patterned
surface is practically lost even at very short distances from the
substrate. However, a closer examination of the tail of the
distributions in this regime (∆/Ν < 1) reveals that the patterned
brush appears slightly more elongated than the corresponding
homogeneous brush with grafting density σ. This finding suggests
that, although both brushes have the same overall grafting density,
σ, the patterned brush appears slightly more extended as a result
of the locally higher grafting densities imposed by the patterned
surface. (ii) When ∆/N . 1, the brushes on the grafted stripes
become independent, and the density profile of the patterned
systems tends to become similar to the corresponding profile of
a homogeneous brush with grafting density equal to σs. However,
in accordance to the findings of Patra et al., the bulk behavior
is not recovered, even when ∆ = 10N as a result of the lateral
swelling of the individual brushes. (iii) In the intermediate regime,
when ∆ is comparable or slightly greater than N, the density
profile is intermediate between the two limiting cases and exhibits
nontrivial behavior. In this regime, the morphology of the overall
brush is determined by the interplay between the entropic tendency
to swell laterally, in order to cover the empty space of the adjacent
nongrafted stripes and the steric interactions among the successive
sub-brushes that prevent extended lateral swelling. Similar

behavior is observed for all the studied systems, irrespective of
their grafting densities and polymer lengths.

The first moment of φ(z;∆,N,σs) gives the equilibrium mean
brush height: zj(∆,N,σs) ) [∫dzφ(z;∆,N,σs)z]/[∫dzφ(z;∆,N,σs)].
Both self-consistent field (SCF) theories8 and computer simula-
tions of uniformly grafted polymer brushes under good solvent
conditions37,40 predict, in accordance with scaling arguments,6,7

that the average brush height, zju(N,σ) obeys the scaling law zju(N,σ)
∝ Nσ1/3. This relationship, strictly valid for semidilute brushes,
is confirmed by our simulations for all the systems with Nσ1/3

> 13. The systems with σ ) 0.05, N ) 60 and with σ ) 0.1,
N ) 30 deviate slightly from this scaling law since, according
to Wittmer et al.,40 they fall in the boundary between the
mushroom and the semidilute regime. We use the ratio q(∆,N,σs)
) zj(∆,N,σs)/zju(N,σs/2) as a direct measure of the deviation of the
patterned brush height from the corresponding mean height of
a homogenously grafted system with the same overall grafting
density. According to the previous qualitative analysis of the
density profiles, we expect that, for ∆/N , 1, q(∆ , N,σs) =
1, and for ∆/N . 1, q(∆ . N,σs) = 21/3. Indeed, as we can see
from Figure 3a, where we plot q(∆,N,σs) as a function of ∆/N,
this is the case for ∆/N , 1. The other limiting case, ∆/N . 1,
requires simulations of very large systems; however, the behavior
of the plotted curves suggests that this limit is approached, at
least for the systems with the higher grafting density, when ∆/N
> 20. From the same plot it appears that the critical value of ∆/N,
at which the patterned brush departs from the homogeneous
brush behavior, depends on the grafting density at the grafting
stripes. A closer examination of Figure 3a reveals that this
departure occurs at lower ∆/N upon decreasing the grafting
density. In Figure 3b we plot q(∆,N,σs) as a function of � ≡
∆/(Nσs

1/3). With this rescaling, the data points collapse fairly
accurately, at least up to � ≈ 10, to a single curve. This implies
that the dependence of the average brush height zj(∆,N,σs) factors
as

z-(∆, N, σs)) z-u(N, σs ⁄ 2)q[(∆ ⁄ (Nσs
1 ⁄ 3)] (1)

where q(�) is a universal function of � ) ∆/(Nσs
1/3). We suggest

the following functional form for q(�):

q(�)) { 1 �e �0

21 ⁄ 3 - (21 ⁄ 3 - 1)e-a(�-�0) � > �0
(2)

This equation satisfies both limiting conditions since for � < �0,
q(�) ) 1, and for � . �0 we have q(�) ) 21/3. Choosing a )
0.12 and �0 ) 2.5, we get a satisfactory fit (the thick solid line
in the plot of Figure 3b) of the calculated data for the whole
range of �.

In order to examine in more detail the morphology of the
patterned brush we calculated the two-dimensional density profile
φ(x,z;∆,N,σs)(≡(1/Ly)[〈∑n)1

K ∑i)0
N δ(z - zi;n)δ(x - xi;n)〉]), which

gives the equilibrium probability density to find a monomer at
x,z, irrespective of its y-coordinate. The corresponding density
profile of the free ends of the chains, φe(x,z;∆,N,σs)(≡(1/
NLy)[〈∑n)1

K δ(z- zN;n)δ(x- xN;n)〉]), gives important information
for the distribution of the free ends of the polymer above the
grafting surface, but it is inefficient to provide a clear picture of
the outer surface of the brush due to extensive backfolding of
the free ends of the chains. To quantify the morphology of the
outer surface of the grafted polymer, we define the perimeter of
the brush as the thin layer that is characterized by a monomer
volume fraction φ(x,z) within the range φ0 ( 0.005. Solving the
inequality |φ(x,z) - φ0| e 0.005 at x, we obtain a range of z’s
located within a small interval centered at hφ0(x). This function
gives the φ0 “level” of the perimeter of the brush as a function
of x.

Figure 2. Monomer density profile �, for systems with N ) 60 and σs

)0.1, for various pattern widths, ∆. The two limiting cases corresponding
to homogeneous brushes with grafting densities σs and σs/2 are also
plotted.
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In Figure 4a-c we show representative density profile plots
for the system with N ) 40, σs ) 0.1 and for various stripe
widths, ∆. In these plots, the φ0 ) 0.05 and φ0 ) 0.08 perimeters
of the brush are highlighted with yellow and red colors,
respectively. Clearly, for ∆ ) 80 (� > 2.5) the system appears
as a sequence of independent sub-brushes above the grafting
stripes (Figure 4c). On the other hand, for ∆ ) 20 and ∆ ) 40
(� < 2.5) (Figure 4a,b, respectively), the lateral extension of the
sub-brushes becomes greater than half of the stripe width, and
the polymers form a continuous layer that fully covers the

patterned substrate. However, in this region, and for small values
of ∆ (or, in the general case, for small values of �), the outer
surface of the polymer layer appears statistically flat, resembling
the morphology of a homogeneously grafted brush. On the other
hand, for intermediate values of ∆, the outer surface of the film
exhibits a wavy structure, as clearly depicted in Figure 4b. The
periodicity of this pattern along the x-axis is the same with the
periodicity of the substrate, and its maxima and minima are
located on average above the midpoints of the grafted and
the empty stripes, respectively. Interestingly, for these values of
∆, the polymer layer exhibits well-defined pores in the form of
parallel tunnels above the nongrafted stripes. These three distinct
polymer film morphologies are observed in all the studied systems
upon changing the width of the grafting stripes.

To quantify our previous analysis of the morphology of the
patterned brush and, more importantly, to determine the
boundaries between the identified regimes as a function of ∆,
N, and σs, we have calculated the average groove depth
wj φ0(∆,N,σs) for all the systems studied. We define this quantity
as the difference between the average height, hφ0, of the polymer
film at the crests and the corresponding height at the troughs
of the wavy pattern. The subscript φ0 is used to indicate the
local monomer density used for the determination of the
perimeter of the brush. Clearly, for a patterned brush with a
flat outer surface, wj φ0(∆,N,σs) goes to zero. It takes its
maximum value when the system is in the nonoverlapping
sub-brush regime. The results are presented in Figure 5 where
we plot, as a function of �, the reduced groove depth, wφ0

* (∆,N,σs)
)wjφ0(∆,N,σs)/zj(∆,N,σs) calculated at the φ0) 0.05 density level,
i.e., the average groove depth wj 0.05(∆,N,σs) scaled with the overall
average brush height zj(∆,N,σs). Again, all the data points collapse
with good accuracy to a single curve. This suggests that the
average groove depth is a universal function of �. From this plot
it becomes clear that, when � < �1 = 0.7, the brush exhibits a
structurless, statistically flat, outer surface. At the other extreme,
when � > �2 = 4, all the systems are in the uncorrelated sub-
brush regime. In the intermediate regime, �1 < � < �2, the outer
surface of the brush exhibits the characteristic grooved morphol-
ogy and parallel pores above the nongrafting stripes. In this
regime both the depth of the grooves and the dimensions of the
pores above the nongrafting stripes increase monotonously with
�. It should be noted here that the values of �1 and �2 depend
on the choice of the local monomer density, φ0, used to define
the perimeter of the brush. However, our results indicate that for
any φ0 < 0.1, wjφ0(N,∆,σs) is a universal function of �. Working
with φ0 ) 0.05, the calculated data of w0.05

* (�) are described
satisfactorily by a functional dependence of the form

Figure 3. Plots of the ratio q(∆,N,σs) ) zj(∆,N,σs)/zju(N,σs/2) as a function of (a) ∆/N and)b) � ) ∆/(Nσ1/3). The solid line in (b) has been obtained
using eq 2 with parameters a ) 0.12 and �0 ) 2.5.

Figure 4. Representative contour plots of the average two-dimensional
density profile �(x,z) for the system with N) 40 and σs ) 0.1 for various
stripe widths: (a) ∆ ) 20(� ) 1.08), (b) ∆ ) 40 (� ) 2.15), and (c) ∆
) 80(� ) 4.31). The yellow and red contours correspond to φ0 ) 0.05
and 0.08, respectively. The alternating green and orange bars on the
x-axis represent the grafting and nongrafting stripes, respectively.

Figure 5. Plot of the calculated reduced average groove depth,
w0.05

* (N,∆,σs) ≡ wj 0.05(∆,N,σs)/zj(∆,N,σs), as a function of � ) ∆/
(Nσs

1/3), together with the plot (solid line) of eq 3.
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w0.05
* (�)) { 0 , � < �1

a(�- �1)
b , �1 < � < �2

a(�2 - �1)
b , � > �2

(3)

The solid line in Figure 5 is the plot of Eq. (3), with parameters
a ) 0.4, b ) 3/2, �1 ) 0.7 and �2 ) 4. On the other hand, for
φ0 > 0.1 our results indicate that the corresponding perimeter
of the brush is strongly affected by the periodicity of the patterned
substrate and wφ0

* (�) reflects primarily the periodicity of the
substrate instead of the true morphology of the outer surface of
the brush. Practically speaking, the measurement of the outer
surface inhomogeneities of such systems in the low � regime by
scanning probe microscopy is restricted by the requirement that
the scanning probe should be sensitive in the measurement of
forces stemming from the φ0> 0.1 density levels. This limitation
was already pointed out by Patra and Linse in connection with
their related atomic force microscopy studies in nanopatterned
brushes.17,18

Working in the �1 < � < �0 regime and combining the
power law of eq 3 and eqs 1 and 2, the average grove depth can
be written as wj ) zju(N,σs/2) × a(� - �1). Taking into account
that, for good solvents, zju in the semidilute regime scales as
Nσs

1/3, we obtain wj ∝ ∆(� - �1)b/�. A consequence of this
proportionality is that, at constant �, the depth of the groves
increases linearly with the width of the stripes, ∆, provided that
� < �0 ) 2.5. This means that we can obtain a specified groove
depth for various stripe widths by tuning properly N and/or σs,
provided that we keep � constant.

So far we studied exclusively systems under good solvent
conditions. Simulations performed for poorer solvents (ε/kBT
< 0) indicate that the quality of the solvent strongly affects
the morphology of the polymer brush. We have studied in
detail the solvent (temperature) effects for the system with N
) 40, σs ) 0.1, and ∆ ) 40 (yielding � ) 2.15). Calculated
two-dimensional density profiles at various solvent conditions
are presented in Figure 6a-d. Taking into account that the
Θ-point, as calculated in ref 38 with the same parametrization
adopted in our study, is (ε/kBT)Θ=-0.52, the presented density
profiles correspond to systems (i) under good solvent conditions
(Figure 6a,b), (ii) close to the Θ-point (Figure 6c), and (iii) under

a very poor solvent (Figure 6d). Clearly, as the quality of the
solvent worsens, chains tend to congest above the occupied stripes,
and both the depth of the grooves and the size of the pore above
the nongrafting stripes increase. Below the Θ-point, the brushes
on each stripe fully separate and form dense column-like structures
where the lateral expansion of the sub-brushes is very limited
(see Figure 6d). However, the “crystallization” within the columns
at these very low temperatures is mainly due to the lattice nature
of the bond fluctuation model, and this effect should not
be expected in real grafted chains.37,38 These results demonstrate
clearly that it is possible to tune, in a controllable fashion, the
morphology of the outer surface of the nanopatterned brush by
changing the solvent conditions.

Conclusions

In conclusion, our results suggest that, under good solvent
conditions, the average brush height, when scaled with the
mean height of the equivalent homogeneously grafted brush,
is a universal function of the combined parameter, � ) ∆/
Nσs

1/3. For � < �0 ≈ 2.5, the average height of the patterned
brush coincides with the height of a nonpatterned brush with
surface coverage σ ) σs/2. On the other hand, for � > �0, eq
3 satisfactorily describes the �-dependence of the scaled average
height. Therefore, �0 constitutes a critical parameter that defines
the combinations of N, σ, and ∆ for which the average height
of the patterned brush starts to deviate from the corresponding
height of a homogeneous brush having the same overall grafting
density.

Furthermore, we have identified in terms of � three different
regimes with distinct brush morphology. For � < �1 ≈ 0.7,
the polymer film has properties similar to those of a
homogenously grafted brush with grafting density σs/2. For
� > �2 ≈ 4, the tethered polymers form a sequence of isolated
sub-brushes extended above the grafting stripes. More
interestingly, for �1 < � < �2, the polymer layer exhibits
parallel pores above the nongrafting stripes and a grooved
outer surface. The relative depth of the grooves is a universal
function of �.

The proposed analysis of the structural properties of the specific
nanopatterned brushes studied here, in terms of a single parameter

Figure 6. Calculated contour plots of the average two-dimensional density profile �(x,z) for a system with N ) 40, σ ) 0.1, and ∆ ) 40 (�
) 2.15) for various solvent qualities. The φ0.05 perimeter of the brush is highlighted. (a) ε/kBT ) 0, very good solvent; (b) ε/kBT ) -0.3, good
solvent, the system is above the Θ-point; (c) ε/kBT ) -0.5, the system is close to its Θ-point;37 and (d) ε/kBT ) -0.7, bad solvent. Note
here that the unit length of the y-axis is twice that of the x-axis.
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� ) ∆/Nσs
1/3 provides clear guidelines for designing and

fabricating well-defined and controllable polymeric films. These
systems may serve as soft templates for the manipulation and
possibly for the ordering of nanoparticles of various sizes.
Furthermore, the predetermined directionality of the stripes
together with the tunable depth of the grooves could be utilized
to provide thermodynamic and mechanical control on liquid
crystalline order. Finally, an interesting feature of these systems

is that they offer the possibility for a precise control of their
pattern by changing the solvent quality.
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