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Supplementary Information 

 

This supplementary information file consists of four sections: In section 1 we 

introduce the interaction potential used in the molecular simulations. In section 2 we 

define the ordering matrix tensors used in this study and describe the nematic phases 

in terms of them. In section 3 we present a set of calculated positional and mixed 

positional-orientational two-dimensional pair correlation functions. In section 4 we 

briefly describe the methodology for the calculation of the correlation lengths and we 

compare our results with available experimental results. 

 

1. Interaction potential 

 

A variant of the anisotropic soft-core potential introduced in Ref. [R1] is used to 

describe the interaction potential between the spherocylindrical segments. The 

repulsive part grows exponentially with distance, as opposed to the linear increase of 

the original form [R1], in order to prevent extensive overlapping of the segments. The 

functional form of the potential reads 
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with ( ) 0U d =  when cutd d> ; here, d , ε  and cutd  are functions of the directions of 

the cylindrical segments and of the vector connecting their centers and denote 

respectively: the shortest distance (in units of D ) between a pair of segments, the 

maximum well depth and the cut-off distance of the potential. The latter two are 

determined simultaneously by requiring the potential and its first derivative to vanish 

at the cut-off separation. Lastly, ( ) ( )0 2 2ˆ ˆ ˆ ˆ, 5attr i j i jU u u U P u uε= − ⋅ , with 2P  denoting 

the 2nd Legendre polynomial. Introducing 0ε  as an energy unit that sets the scale for 

the reduced temperature according to *
0/T kT ε= , we have chosen 0 0150U ε= , 
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2 012ε ε=  and max 025U ε=  which allow for a relatively broad stability range of the 

nematic phase. With this parameterization the potential-well depth for two parallel 

spherocylinders with their centers at a distance D  apart, is 0~ 1.7ε− . Flexibility is 

readily introduced when 0oθ ≠ , in which case each end-segment is allowed fixed-θ  

precessions about the long axis of the spherocylindrical core segment it is attached to 

(see Fig. 1(a) in the main text of the letter). 

 

2. Ordering Matrix Tensors for the Nematic Phase 

 

For a given configuration of the molecules within the simulation box, the principal 

axes ˆ ˆ ˆ, ,p p pX Y Z  are determined through the diagonalization of the ordering matrix 

tensors [R2]  
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with ˆ ˆ ˆ or  or i i i ix y zα = representing the molecular axes of the ith molecule and 

ˆ ˆ ˆ, , ,A B X Y Z=  representing the axes of the simulation box. The three eigenvalues of 

the zz
ABQ  tensor are sorted according to sequence 1 2 3

z z zλ λ λ> > . In the untwisted 

nematic state, 0N , these satisfy the conditions 1 0zλ >  and 2 3 0z zλ λ≈ < , in which case 

the nematic director ( ˆˆ pn Z≡ ) is identified as the eigenvector associated with 1
zλ . In 

the twisted states, N ± , the three eigenvalues satisfy 1 2 0z zλ λ≈ >  , 3 0zλ <  and the helix 

axis ˆ ˆ
ph Z≡  is taken to coincide with the eigenvector of 3

zλ . According to these 

assignments, the nematic order parameter is obtained as ( )2ˆˆ3 1 / 2i pS z Z= ⋅ −  and 

the biaxial order parameter as ( ) ( ) ( ) ( )2 2 2 2ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ / 2i p i p i p i pB x X x Y y X y Y= − − + . 

In the 0N  phase, the order parameter ( )2ˆˆ3 1 /2iS z n=< ⋅ − > , is found to be around 

0.7-0.8 at the I N−  transition and to increase with decreasing temperature. The 

biaxial order parameter in this phase is essentially zero throughout the nematic 

temperature range. To quantify the orientational order in the N ±  states we have 

divided the sample into thin slabs (thickness of 2-3 molecular diameters) normal to 
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the helix axis ĥ . The order parameter in each slab shows the same numerical values 

and temperature dependence with the global order parameter S  found for the 0N  

state. However, the biaxial order parameter within each slab takes clearly and 

persistently non-zero values, reflecting local biaxial order, as expected for a chiral 

state wherein the helix axis breaks the rotational symmetry about the nematic director. 

 

3. Two-Dimensional Pair Correlation Functions 

 

The usual radial pair correlation functions are not always sensitive for the detection 

the local structure around a molecule, either because they inherently entail averaging 

over spherical shells or because their calculation involves macroscopic properties 

(such as the nematic director) which could in fact fluctuate considerably. For instance, 

from the calculation of the usual radial pair correlation function ( )g r  and the 

respective projected distributions ( )g r⊥ ⊥ , ( )// //g r , it follows that the 0N  and the N ±  

states exhibit purely positional correlations only over a relatively short range. These 

pair correlations, however, are not appropriate for detecting mixed positional and 

orientational correlations and therefore could not reveal clearly the presence of helical 

order. Thus, to analyze the nematic states at the microscopic level, i.e the local 

environment sensed by a single molecule, we have calculated the set of mixed 

positional/orientational two-dimensional pair correlation densities defined in the main 

text of the letter, which refer to molecular axis frames (as opposed to the director 

frames).  

In Figs. S1 and S2 we present the calculated ˆˆ,
ˆ1;

a b
xg  and ˆˆ,

0
a bg  at relatively low 

temperature ( * 2.2T = ) for the 0N  state for the three molecular planes (i.e the planes 

defined by the x y− , x z−  and y z−  molecular axes). In Figs. S3 and S4 we present 

the respective functions for the N −  state at the same temperature. 

From the graphs of the ( )ˆ ˆ,
0 ,x yg x y  functions, both in 0N  and N −  states (see Figs. 

S2(a) and S4(a)), it follows that the molecules surrounding a given molecule are 

arranged uniformly in the x y− plane of that molecule. On the other hand, the 
ˆ ˆ,

ˆ1; ( , )x y
xg x y  functions are strongly anisotropic (see Figs. S1(a) and S3(a)). Each 

molecule in the sample can be viewed as being surrounded by a non spherical region 
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containing neighboring molecules that have strong polar (and therefore biaxial) 

correlations with that molecule. The ˆ ˆ,
0 ( , )x zg x z  functions (see Figs. S2(b) and S4(b)) 

show secondary maxima (indicated by the red arrows) at separations equal to one 

molecular length, which indicates directly the tendency for layering. The sign-

alternation of the ˆ ˆ,
ˆ1; ( , )x z
xg x z  functions (see Figs. S1(b) and S3(b)) is evidence of 

antiferroelectric order. 

 

4. Estimates of Correlation Lengths and Comparison with Experiment 

 

The polar correlation lengths xξ , yξ  along the x̂ and ŷ  molecular axes, respectively, 

were estimated from ˆ ˆ,
ˆ1; ( , )x y
xg x y  as the optimal parameters for fitting the separate x and 

y dependences of this function to the functional forms /ˆ ˆ,
ˆ1; ( ,0) ~ xxx y
xg x e ξ−  and 

/ˆ ˆ,
ˆ1; (0, ) ~ yyx y
xg y e ξ−  (see Figs. S1(a) and S3(a)). The estimated uncertainties of the 

values of the correlation lengths xξ  and yξ  obtained with this procedure are 

( )25 10  −⋅  at high temperatures and ( )15 10  −⋅ at lower temperatures. Roughly, the 

average transversal correlation length is estimated from ( ) 2x yξ ξ ξ⊥ ≈ + . The polar 

correlation length along the ẑ  molecular axis, zξ , has been estimated from fits to the 

functional dependence ( )ˆ ˆ,
ˆ1; max( , ) ~ cos zzx z
x zg x z B z e ξ− , which accounts for the 

simultaneous decay and sign change of ˆ ˆ,
ˆ1; max( , )x z
xg x z  with z (see Figs. S1(b) and 

S3(b)). Here maxx  denotes the position of the first maximum of ˆ ˆ,
ˆ1; ( , )x z
xg x z ; this is 

obtained at maxx D= . The estimated uncertainty of the values obtained in this way for 

the correlation lengths zξ  is ( )11 10  −⋅  at high temperatures and ( )02 10  ⋅ at lower 

temperatures. The calculated polar correlation lengths, as functions of temperature, 

are shown in Fig. S5(a) for the 0N  and in Fig. S5(b) for the N −  state. 

We have compared the values for the ratio zξ ξ⊥ , as obtained from the calculations 

described above, with the values obtained from recent experimental XRD studies [R3, 

R4] on bent core molecules of the type we have modeled in our simulations. In Fig. 

S6 we present the calculated and the experimental values of the ratio zξ ξ⊥  as a 
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function of the reduced temperature1 INT T− , where INT  is the isotropic-nematic 

transition temperature. Considering the simplicity of the molecular modeling, the 

agreement is remarkably good. 
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FIG. S1. Plots of the calculated correlation functions for the untwisted nematic state 

0N  at temperature * 2.2T = . (a) ˆ ˆ,
ˆ1; ( , )x y
xg x y , (b) ˆ ˆ,

ˆ1; ( , )x z
xg x z  and (c) ˆ ˆ,

ˆ1; ( , )y z
xg y z . Left 

column: 3 dimensional plots; Right Column: contour plots. 
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FIG. S2. Plots of the calculated correlation functions for the untwisted nematic state 

0N  at temperature * 2.2T = . (a) ˆ ˆ,
0 ( , )x yg x y , (b) ˆ ˆ,

0 ( , )x zg x z  and (c) ˆ ˆ,
0 ( , )y zg y z . The 

characteristic secondary maxima (indicated by arrows) suggest a tendency for 
layering. 
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FIG. S3. Plots of the calculated correlation functions for the twisted nematic state N −  
at temperature * 2.2T = . (a) ˆ ˆ,

ˆ1; ( , )x y
xg x y , (b) ˆ ˆ,

ˆ1; ( , )x z
xg x z  and (c) ˆ ˆ,

ˆ1; ( , )y z
xg y z . Left column: 

3 dimensional plots; Right Column: contour plots. 
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FIG. S4. Plots of the calculated correlation functions for the twisted nematic state N −  
at temperature * 2.2T = . (a) ˆ ˆ,

0 ( , )x yg x y , (b) ˆ ˆ,
0 ( , )x zg x z  and (c) ˆ ˆ,

0 ( , )y zg y z . The 
characteristic secondary maxima (indicated by arrows) suggest a tendency for 
layering. 
 
 

x y 

x z 

y z 

(a) 

(b) 

(c) 



 10

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. S5. Calculated temperature dependence of the polar correlation lengths xξ , yξ , zξ  

and ξ⊥  for the untwisted nematic 0N  (a) and for the twisted nematic N − (b). 
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FIG. S6. Correlation length ratio zξ ξ⊥  as a function of the reduced 
temperature1 INT T− , where INT  is the isotropic-nematic transition temperature. 
Calculated values from MC-NpT simulations are shown as squares (for the untwisted 
nematic 0N state) and as circles (for the twisted nematic state N − ). Values obtained 
from XRD experiments are shown as upright triangles (data of Francescangeli et. al. 
[R3]) and as inverted triangles (data from Francescangeli and Samulski [R4]). 
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