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We report on the emergence of a Dirac point in the dispersion relation of a plasmonic metamaterial. It is
realized as a three-dimensional crystal (cubic or orthorhombic) whose lattice sites are decorated by aggregates of
gold nanoparticles embedded in a high-index dielectric material. The Dirac-type dispersion lines of the photon
modes are not a result of diffraction as in photonic crystals but due to subwavelength features and emerge
from the gapless transition from a negative to a positive index band. The Dirac point is manifested as a dip in
the spectrum of light transmittance through a finite slab of the metamaterial; however, transmittance does not
decrease diffusively but exponentially due to the inherent losses of gold in the given spectral regime.
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One of the salient features of graphene, i.e., a monolayer
of carbon atoms that occupy the sites of a honeycomb lattice1

is the presence of conical singularities in the electron band
structure, i.e., conically shaped valleys touching each other
at the corners of the Brillouin zone. These singularities are
known as Dirac points since the energy dispersion relation
around these points reduces to the Dirac equation of a massless
relativistic particle.2,3 Photonic and phononic crystals possess-
ing triangular symmetry are the electromagnetic (EM) and
elastic counterparts of graphene, respectively. Under certain
conditions, they can exhibit Dirac singularities in the frequency
band structure as has been numerically predicted4,5 and exper-
imentally verified in sonic6 and microwave experiments.7 The
opening of the Dirac singularity (gap creation) in honeycomb
photonic crystals by time-reversal-symmetry breaking can lead
to one-way defect-free waveguiding of light with important
applications in optoelectronics.8 Dirac points in the band
structure of ultracold atoms trapped in honeycomb optical
lattices have also been reported.9

Dirac singularities in the band structure have been reported
for two-dimensional (2D) honeycomb4,5 or square lattices.8,10

There, the Dirac singularity appears at an edge of the Brillouin
zone and, as such, corresponds to both finite frequency ω and
wave vector k. However, it has been recently suggested that a
Dirac point can emerge at the center of the Brillouin zone in a
so-called negative-zero-positive (NZP) metamaterial, a mate-
rial without a gap between a negative and a positive refractive-
index band.11 Metamaterials are artificial electromagnetic
structures whose basic properties (artificial magnetism,14 neg-
ative effective index,15 near-field amplification,16 cloaking,17

perfect absorption,18 etc.), unlike photonic crystals, are gener-
ally observed in the long-wavelength limit and are, therefore,
characterized as subwavelength structures. A Dirac singularity
of a metamaterial can also be a subwavelength feature and, as
such, it will occur at the center of the Brillouin zone while
in photonic crystals, it is a result of wave diffraction. NZP
metamaterials based on transmission lines12 and split-ring
resonator/wire technology13 have been realized in the GHz
regime.

In this work, we report on the emergence of a Dirac
singularity in the dispersion relation of a three-dimensional
(3D) plasmonic NZP metamaterial in the optical regime.

Namely, the metamaterial under study is a orthorhombic
lattice whose sites are occupied by aggregates of metallic
nanoparticles (NPs) embedded in a dielectric host (see Fig. 1).
Originally, this type of metamaterial has been proposed as
a candidate structure possessing a dispersive permeability in
the optical regime via the excitation of strong Mie resonances
of the EM field within a single cluster of metallic NPs.19 As
shown below, for a dielectric surrounding with a sufficient
large permittivity, such a metamaterial exhibits anomalous
dispersion for the dominating eigenmode, i.e., increasing
frequency with decreasing wavevector within a certain spectral
region. The latter, however, potentially suggests negative
refraction only for materials with low losses where wave
propagation is meaningful.20 Unfortunately, this does not hold
in the present example. Nevertheless, for sufficiently high
dielectric constant of the material surrounding the NPs of
the cluster, the real part of the dispersion relation of the
metamaterial may exhibit a continuous (gapless) transition
from a negative to a positive refractive index giving rise to
a Dirac singularity. The refractive index herein is defined as
the norm of the real part of the propagation constant of the
lowest order Bloch mode normalized to the length of the
wavenumber in free space. The Dirac singularity manifests
itself here as a distinct minimum in the transmission spectrum
of light incident on a finite slab of the metamaterial over a
narrow frequency domain.

As stated above, the basic unit which repeats itself in
the metamaterial is a cluster of 100 nonoverlapping metallic
NPs, namely, gold NPs embedded in an insulating host of
dielectric constant ε (see Fig. 1). The positions of the gold
particles within the aggregates are taken from a Monte-Carlo
simulation of the self-organization of these particles under a
spherically confining potential. All particles have the same
radius S = 8.8 nm while the average radius of the cluster is
Sc = 42.67 nm. The dielectric function of a single gold NP
is taken from experiment21 with corrections accounting for
finite-size effects [see Eqs. (3) and (4) of Ref. 22]. In order
to study the optical response of a single cluster of NPs, we
have employed an EM direct-space multiple-scattering method
for an arbitrary collection of a finite number of scatterers.23

Based on this method, we have calculated the scattering cross
section of light incident on the above cluster where the spheres
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FIG. 1. (Color online) (Upper panel) Scattering cross section of
light incident on the spherical cluster shown in the inset. The cluster
consists of 100 nonoverlapping gold nanoparticles of radius S =
8.8 nm in a nearly close-packed arrangement with cluster radius
42.67 nm. (Lower panel) z-component of the scattered magnetic field
generated by a z-propagating and x-polarized plane wave illuminating
the cluster of the figure at the peak frequency (1.9 eV) of the scattering
cross section. The field is plotted within the xy-plane which is an
equatorial cross section of the cluster.

are assumed to be embedded in a dielectric with ε = 5; see
Fig. 1. For definiteness, the incident field propagates along
the z-direction and its electric field is polarized along the
x-direction (the particular choice of the polarization direction
is of marginal importance due to the spherical symmetry of
the particle). It is evident that scattering exhibits a prominent
peak at about 1.9 eV which is lower than the energy of
2.05 eV corresponding to the dipolar surface plasmon (SP)
resonance of an isolated gold NP embedded in a host medium
with ε = 5. A similar redshift of the SP resonance has been
reported for clusters of gold nanospheres embedded in an
aqueous medium.24,25 At the same time, the clusters also
exhibit a significant magnetic activity as manifested in the
nontrivial variation of the effective magnetic permeability for
a medium made of such clusters.25 In order to confirm the
magnetic activity in our case, we show, in the lower panel of
Fig. 1, the z-component of the scattered magnetic field at an

FIG. 2. (Color online) Quarter-spherical intersection of a 3D
metamaterial made of the clusters of NPs of the inset of Fig. 1.

intersection (xy-plane) of the cluster of Fig. 1. The frequency
of the illuminating plane wave corresponds to the the peak
energy (1.9 eV) of the scattering cross section of the top panel
of Fig. 1. It can be seen that the variation of the scattered
magnetic field resembles a magnetic dipole (opposite values
of the field at the two opposite poles of the spherical cluster). It
is also worth noting that the magnetic field within the spheres
is opposite to the one outside the spheres. The electric-field
response is the one expected for metals for frequencies far
below the plasma frequency which results in a strong electric
response of the cluster. The significant magnetic activity along
with the ordinary electric response of the cluster of NPs is
a sign for a possible appearance of nontrivial variation of
the refractive index (spectral regions of negative values) in a
metamaterial consisting of the above clusters of NPs.

The metamaterial we have in mind is a slightly elongated
cubic (orthorhombic) lattice viewed as a succession of 2D
square lattices of the above clusters of gold NPs, parallel
to the xy-plane (see Fig. 2). The lattice constant of the
2D square lattice is ax = ay = 85.22 nm while the lattice
constant in the z-direction is az = 87.86 nm. It is essential
that the choice of lattice and corresponding parameters is
more or less arbitrary since the metamaterial under study is
a par excellence subwavelength structure where the details of
the underlying lattice are not crucial. In order to study the
EM response of such a metamaterial, we have employed a
two-stage multiple-scattering method for light. At the first
stage, we employ the direct-space EM multiple-scattering
method described above23 in order to calculate the scattering
T -matrix of the entire cluster.26 The latter is embedded
within an existing layer-multiple-scattering formalism and
computer code27 which provides the transmission, reflection,
and absorption coefficients of an EM wave incident on a slab
consisting of a number of layers which can be either planes
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FIG. 3. (Color online) Real part of the dispersion relation for the
lowest order Bloch eigenmode, ω = ω(k′

z), at the center of the SBZ
(k‖ = 0) for the orthorhombic (ax = ay = 85.22 nm, az = 87.86 nm)
NZP metamaterial of Fig. 2 for different values of the dielectric
constant ε of the host medium surrounding the gold nanospheres.

of single particles or clusters of such particles (as in our
case) with the same 2D periodicity. Apart from the above
quantities, by imposing periodic boundary conditions into the
third dimension, one can also obtain the (complex) frequency
band structure of an infinite periodic crystal.27

Figure 3 shows the real part of the frequency band structure
ω = ω(k′

z) of the above metamaterial for different host media
surrounding the clusters (and the NPs within the cluster). We
note that kz is the z-component of the Bloch wave vector
which is normal to the surface Brillouin zone (SBZ) of the
2D square lattice and it is generally a complex quantity, i.e.,
kz = k′

z + ik′′
z . We recall that the other component of the Bloch

wave vector, i.e., k‖ which is parallel to the SBZ and assumes
values within it, is held fixed for a given band diagram such as
the one shown in Fig. 3. In our case, we have chosen the center
of the SBZ (�̄-point), i.e., k‖ = 0. It is evident that, as the
dielectric constant ε of the host medium increases, we witness
the formation of a Dirac singularity around 2.2 eV. When
calculating the band structure in the layer-multiple-scattering
method, one writes the EM field as a sum of plane waves
and thus involves an infinite summation over the reciprocal-
lattice vectors g corresponding to a given 2D lattice (square in
our case).27 The band diagrams of Fig. 3 converge solely by
the contribution of the field components corresponding to the
reciprocal-lattice vector g = 0. This means that the occurrence
of the Dirac singularities in Fig. 3 is a subwavelength feature
and other diffraction-generated components corresponding to
vectors g �= 0 are irrelevant. This also means that one can
attach an effective refractive index neff to the band diagrams of
Fig. 3: below the Dirac singularity, neff has a negative real part
while above it, the real part of neff assumes positive values. The
fact that the Dirac points emerge with increasing ε of the host
medium is attributed to the corresponding increasing strength
of the magnetic and electric interactions among the NPs in a
cluster (or among the clusters in the metamaterial) driven by
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FIG. 4. (Color online) (a) Real frequency band structure, ω =
ω(k′

z), at the center of the SBZ (k‖ = 0) for the orthorhombic (axy =
85.22 nm, az = 87.86 nm) NZP metamaterial of Fig. 2 where the
nanospheres are embedded in a host with ε = 5. Reflectance (b),
absorbance (c), and transmittance (d) of light incident normally on a
finite slab of the NZP metamaterial of Fig. 2 consisting of different
numbers of planes.

the increasing inductive and capacitive coupling among NPs
(or clusters).

Figure 4(a) shows the band structure for ε = 5 (also
shown in Fig. 3) along with the corresponding transmit-
tance/reflectance and absorbance spectra for light incident
normally (k‖ = 0) on finite slabs of the metamaterial of
various thicknesses (number of planes). Evidently, at the
frequency of the Dirac point, transmittance and absorbance
exhibit a local minimum while reflectance exhibits a local
maximum. A minimum in the transmittance at the Dirac
singularity is also reported in lossless photonic crystals4–7

in which case transmittance decreases linearly with the slab
thickness (diffusive transport). In our case, however, from
Fig. 4(d), it is evident that transmittance decreases exponen-
tially with the number of planes due to the inherent losses of
the gold NPs. Despite the losses, the response of a finite slab
of the metamaterial under study is still governed by the Dirac
equation. Since we study the case of normal incidence (g = 0)
in the subwavelength regime (the contribution of the g �= 0
components is negligible), wave propagation/attenuation
within the slab is effectively described by the one-dimensional
(1D) Dirac equation,

(
0 −ivD∂x

−ivD∂x 0

) (
ψ1

ψ2

)
= (ω − ωD)

(
ψ1

ψ2

)
, (1)
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where ψ = (ψ1,ψ2) represents the amplitudes of the two EM
modes corresponding to the two branches (with negative and
positive propagations, respectively) of the dispersion relation
around the Dirac point. ωD is the Dirac-point frequency and
vD is the corresponding Dirac velocity which is complex,
in our case, in order to accommodate the losses of the
metamaterial. The EM field outside the slab is described
by the Helmholtz equation. Following the same procedure
as in Ref. 4, it can be easily proven that the transmission
coefficient is simply t = exp(ikzL), where L is the slab
thickness and kz is the wave vector within the slab. The latter
is a complex quantity, i.e., kz = k′

z + ik′′
z in which case the

transmittance is given by T = |t |2 = exp(−2k′′
z L). Therefore,

given the transmittance spectrum T , one can calculate the
imaginary part k′′

z = − ln T/(2L). The latter is depicted by
the dashed lines of Fig. 5. In the same figure, we also show
k′′
z (dotted lines) and k′

z (solid lines) as obtained by the
complex frequency-band-structure solver of the LMS method
[the dispersion lines for k′

z are the same as in Fig. 4(a)]. It can
be seen that the k′′

z found based on the Dirac equation and the
one obtained by the rigorous LMS method are in a very good
agreement which confirms the validity of the Dirac equation to
describe the light propagation through the the metamaterial of
Fig. 2. The constant offset is likely attributed to the impedance
mismatch between the free space modes and the eigenmodes
as sustained by the metamaterial. It will cause some spurious
reflection which is not considered in the simplifying model.

We further investigated the presence of the Dirac singularity
away from the center of the SBZ, i.e., for k‖ �= 0. Evidently, the
Dirac singularity is lifted and at ωD , the wave vector assumes a
finite value above and below the Dirac point. Therefore, around
the center of the SBZ (�̄-point), an isofrequency surface
will have a conical shape similar to graphene. We have also
confirmed the existence of a Dirac point in the dispersion
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FIG. 5. (Color online) Complex frequency band structure, ω =
ω(k′

z) and ω = ω(k′′
z ), at the center of the SBZ (k‖ = 0) for the

orthorhombic (ax,y = 85.22 nm, az = 87.86 nm) NZP metamaterial
of Fig. 2 where the nanospheres are embedded in a host with ε = 5.
The dashed lines are obtained by considering the metamaterial slab
as an effective 1D Dirac medium governed by Eq. (1).

relation of an fcc metamaterial viewed as a succession of
(001) planes of clusters (they are the same planes as those of
the orthorhombic metamaterial of Figs. 2–5). The Dirac point
occurs at about the same frequency as the orthorhombic one
[Figs. 4(a) and 5]. Only the curvatures of the positive-index
branch (above the Dirac point) of the dispersion lines differ
substantially from the orthorhombic case.

A note on the possible realization of the NZP metamaterial
under study. 1D and 2D lattices decorated by clusters of
metallic NPs have already been realized by template-assisted
colloidal self-organization. Namely, clusters of metallic NPs
have been deposited within the voids of a 2D periodi-
cally perforated dielectric slab28 or within the trenches of
a 1D grating.29 The resulting structures exhibited strong
artificial magnetic response similarly to the present NZP
metamaterial. Since the latter is a 3D structure, a template-
assisted colloidal self-assembly should be applied to 3D
dielectrics with spherical voids such as inverted opals. The
latter are fcc photonic crystals of air holes in a dielectric
host such as SiO2, TiO2, or Si.30 By infiltrating the air
holes first with gold NPs and then by the dielectric host,
one can realize the metamaterial of Fig. 2. Alternatively,
a bottom-up self-assembly technique without the need of a
(lithograpically fabricated) template can be employed.24,25

Namely, highly stable gold NPs are synthesized by the
Turkey-Frens method31 which are dispersed within an aqueous
solution. By adding a ligand molecule within the solution, the
NPs start to agglomerate into supramolecular clusters.24 The
nontrivial artificial magnetic activity demonstrated in these
clusters25 allows us to expect that a subsequent crystalliza-
tion of the above solution can materialize the structure of
Fig. 2.

The characterization of the structure based on the presence
of the Dirac point can be conducted as follows. When a Dirac
point occurs in the dispersion relation of a lossless crystal (e.g.,
dielectric photonic crystal), right at the Dirac frequency, an
incident plane wave propagates diffusively within a finite slab
of the crystal (transmittance is inversely proportional to the
slab thickness). If such a behavior is observed experimentally
for a finite slab of an ordered crystal and at a given frequency,
the latter corresponds to a Dirac point. In our case, due to the
inherent losses in the metallic nanoparticles, the transmittance
as a function of slab thickness does not obey a power law
(as it is the case for a Dirac point in a lossless system) but
obeys an exponential decay. However, the same exponential
decay is true for a crystal with a frequency band gap and, as
such, one cannot distinguish between a Dirac singularity and a
small band gap. It is therefore important to find an alternative
route to verify the existence of a Dirac point in the plasmonic
metamaterial under study. Due to the subwavelength nature
of the structure (working wavelength much larger than the
lattice period), one can measure the spectrum of the (complex)
effective refractive index by spectroscopic ellipsometry. Right
at the Dirac frequency, the real part of the effective refractive
index should be zero while above (below) the Dirac frequency,
it should be negative (positive). Another possibility is to infer
the presence of a Dirac point indirectly. A good agreement
between the theoretical and experimental reflectance spectra
for various parameters of light incidence (angle of incidence,
polarization) would imply that the fabricated structure is
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a true realization of the theoretically proposed structure.
However, this possibility is less robust than the spectroscopic
ellipsometry mentioned above.

In conclusion, we have shown that it is possible to realize
conical (Dirac) singularities in the photon dispersion relation
by a 3D negative-zero-positive metamaterial consisting of
spherical aggregates of gold NPs surrounded by a high-
permittivity dielectric. The Dirac singularity is a subwave-
length feature and as such it does not depend on the lattice
type of the metamaterial. Despite the intrinsic losses of gold,

wave propagation/attenuation within the metamaterial can be
described by a 1D Dirac equation for massless relativistic
particles with a general complex velocity.
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(FP7/2007-2013) under Grant Agreement No. 228455-
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Rockstuhl for critical reading of the manuscript.
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(2008).

11N. M. Litchinister, A. I. Maimistov, I. R. Gabitov, R. Z. Sagdeev,
and V. M. Shalaev, Opt. Lett. 33, 2350 (2008); L. G. Wang, Z.- G.
Wang, J.- X. Zhang, S.- Y. Zhu, ibid. 34, 1510 (2009); X. Chen,
L. G. Wang, and C. F. Li, Phys. Rev. A 80, 043839 (2009).

12S. Lim, C. Caloz, and T. Itoh, IEEE Trans. Microwave Theory Tech.
52, 1142 (2004).

13F. Zhang, G. Houzet, E. Lheurette, D. Lippens, M. Chaubet, and
X. Zhao, J. Appl. Phys. 103, 084312 (2008).

14J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE
Trans. Microwave Theory 47, 2075 (1999).

15J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
16M. C. K. Wiltshire, J. B. Pendry, I. R. Young, D. J. Larkman, D. J.

Gilderdale, and J. V. Hajnal, Science 291, 849 (2001).
17D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry,

A. F. Starr, and D. R. Smith, Science 314, 5801 (2006).
18N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla,

Phys. Rev. Lett. 100, 207402 (2008).
19C. Rockstuhl, F. Lederer, C. Etrich, T. Pertsch, and T. Scharf, Phys.

Rev. Lett. 99, 017401 (2007).
20V. Yannopapas, Opt. Commun. 282, 4152 (2009).
21R. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370

(1972).
22V. Yannopapas, Phys. Rev. B 73, 113108 (2006).
23I. Thanopulos, E. Paspalakis, and V. Yannopapas, Nanotechnology

19, 445202 (2008).
24N. Shalkevich, A. Shalkevich, L. Si-Ahmed, and T. Bürgi, Phys.

Chem. Chem. Phys. 11, 10175 (2009).
25S. Mühlig, C. Rockstuhl, V. Yannopapas, T. Bürgi, and F. Lederer,

Opt. Express 19, 9607 (2011).
26R. Sainidou, N. Stefanou, and A. Modinos, Phys. Rev. B 69, 064301

(2004).
27N. Stefanou, V. Yannopapas, and A. Modinos, Comput. Phys.

Commun. 113, 49 (1998); 132, 189 (2000).
28H. J. Lee, Q. Wu, and W. Park, Opt. Lett. 34, 443 (2009).
29V. A. Tamma, J. H. Lee, Q. Wu, and W. Park, Appl. Opt. 49, A11

(2010).
30A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W.

Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A.
Ozin, O. Toader, and H. M. van Driel, Nature (London) 405, 437
(2000).

31G. Frens, Nature Phys. Sci. 241, 20 (1973).

045128-5

http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1103/PhysRev.71.622
http://dx.doi.org/10.1103/PhysRevLett.53.2449
http://dx.doi.org/10.1103/PhysRevA.75.063813
http://dx.doi.org/10.1103/PhysRevA.75.063813
http://dx.doi.org/10.1016/j.physleta.2008.02.033
http://dx.doi.org/10.1103/PhysRevLett.100.113903
http://dx.doi.org/10.1103/PhysRevLett.100.113903
http://dx.doi.org/10.1103/PhysRevLett.101.264303
http://dx.doi.org/10.1103/PhysRevLett.104.043903
http://dx.doi.org/10.1103/PhysRevLett.104.043903
http://dx.doi.org/10.1103/PhysRevB.82.014301
http://dx.doi.org/10.1103/PhysRevB.82.014301
http://dx.doi.org/10.1103/PhysRevB.82.094308
http://dx.doi.org/10.1103/PhysRevB.82.094308
http://dx.doi.org/10.1103/PhysRevLett.100.013904
http://dx.doi.org/10.1103/PhysRevLett.100.013904
http://dx.doi.org/10.1103/PhysRevA.78.033834
http://dx.doi.org/10.1103/PhysRevLett.100.013905
http://dx.doi.org/10.1103/PhysRevLett.100.013905
http://dx.doi.org/10.1038/nature08293
http://dx.doi.org/10.1103/PhysRevLett.100.023902
http://dx.doi.org/10.1103/PhysRevA.78.023804
http://dx.doi.org/10.1103/PhysRevLett.102.123904
http://dx.doi.org/10.1103/PhysRevB.80.033105
http://dx.doi.org/10.1103/PhysRevLett.103.033903
http://dx.doi.org/10.1103/PhysRevB.80.155103
http://dx.doi.org/10.1103/PhysRevLett.98.260402
http://dx.doi.org/10.1103/PhysRevLett.98.260402
http://dx.doi.org/10.1088/1367-2630/10/10/103027
http://dx.doi.org/10.1088/1367-2630/10/10/103027
http://dx.doi.org/10.1103/PhysRevB.81.041410
http://dx.doi.org/10.1103/PhysRevB.81.041410
http://dx.doi.org/10.1103/PhysRevB.77.235125
http://dx.doi.org/10.1103/PhysRevB.77.235125
http://dx.doi.org/10.1364/OL.33.002350
http://dx.doi.org/10.1364/OL.34.001510
http://dx.doi.org/10.1103/PhysRevA.80.043839
http://dx.doi.org/10.1109/TMTT.2004.825747
http://dx.doi.org/10.1109/TMTT.2004.825747
http://dx.doi.org/10.1063/1.2910831
http://dx.doi.org/10.1109/22.798002
http://dx.doi.org/10.1109/22.798002
http://dx.doi.org/10.1103/PhysRevLett.85.3966
http://dx.doi.org/10.1126/science.291.5505.849
http://dx.doi.org/10.1126/science.1133628
http://dx.doi.org/10.1103/PhysRevLett.100.207402
http://dx.doi.org/10.1103/PhysRevLett.99.017401
http://dx.doi.org/10.1103/PhysRevLett.99.017401
http://dx.doi.org/10.1016/j.optcom.2009.07.027
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://dx.doi.org/10.1103/PhysRevB.6.4370
http://dx.doi.org/10.1103/PhysRevB.73.113108
http://dx.doi.org/10.1088/0957-4484/19/44/445202
http://dx.doi.org/10.1088/0957-4484/19/44/445202
http://dx.doi.org/10.1039/b912571j
http://dx.doi.org/10.1039/b912571j
http://dx.doi.org/10.1364/OE.19.009607
http://dx.doi.org/10.1103/PhysRevB.69.064301
http://dx.doi.org/10.1103/PhysRevB.69.064301
http://dx.doi.org/10.1016/S0010-4655(98)00060-5
http://dx.doi.org/10.1016/S0010-4655(98)00060-5
http://dx.doi.org/10.1016/S0010-4655(00)00131-4
http://dx.doi.org/10.1364/OL.34.000443
http://dx.doi.org/10.1364/AO.49.000A11
http://dx.doi.org/10.1364/AO.49.000A11
http://dx.doi.org/10.1038/35013024
http://dx.doi.org/10.1038/35013024

