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Layer-multiple-scattering theory for metamaterials made from clusters of nanoparticles
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We present a layer-multiple-scattering method of electromagnetic waves for the study of periodic metamaterials
formed as a lattice of cavities which are filled by clusters of spherical nanoparticles. Our approach is a three-stage
process where we take fully into account all the multiple-scattering events involved: (a) among the spheres of the
cluster inside the cavity, (b) between the cluster and the cavity, and (c) among the cavities (containing the clusters)
within the metamaterial. As an example, we study the transmission, reflectance, and absorbance spectra of light
incident on a finite slab of a SiO2-inverted opal whose voids contain clusters of gold nanoparticles. We find, in
particular, that finite slabs of this metamaterial act as highly efficient absorbers over a wide frequency range,
from 2–4.5 eV. Also, around the local maxima of the absorbance spectrum, the metamaterial exhibits anomalous
dispersion, wherein the real part of the group velocity is opposite to (the real part of) the phase velocity.
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I. INTRODUCTION

Multiple scattering of waves by a collection of scatterers,
apart from being a fundamental phenomenon in physics, con-
stitutes a mathematical technique for solving the wave equation
for given boundary conditions (those imposed by the presence
of scatterers). For infinitely periodic arrays of scatterers,
multiple-scattering theory has been formulated in different
contexts, such as electrons in solids, electromagnetic (EM)
waves in artificial dielectrics, and elastic waves in phononic
structures. Multiple-scattering techniques are divided into two
main categories: the bulk and the layer-multiple-scattering
ones. In the bulk multiple-scattering theory, one deals with
an infinitely periodic crystal and obtains the energy-band
structure for electrons in atomic solids,1 or the frequency
band structure for classical (EM and elastic) waves.2,3 In the
layer-multiple-scattering (LMS) formulation, one assumes the
periodic arrangement of scatterers in two dimensions (2D)
offering the possibility for the study of various configurations,
such as a single plane (monolayer) of scatterers, a finite
slab of several planes or scatterers, or an infinitely periodic
three-dimensional (3D) crystal viewed as a succession of
planes parallel to a given crystallographic direction. For
electrons in solids, the LMS method is widely known as the
theory of low-energy electron diffraction (LEED),4,5 while for
photons6–8 and phonons,9 it is known as the EM and elastic
LMS method, respectively. Apart from the obvious advantage
of treating finite and infinite structures on an equal footing, the
LMS method is an on-shell method and, as such, it provides
a generally complex wave vector k of a 3D periodic structure
for a given frequency or energy [the bulk multiple-scattering
method provides the (real) frequency lines for a given (real)
Bloch wave vector k]. The imaginary part of the wave vector
defines the rate at which an incident beam is attenuated
upon incidence on a finite slab of the crystal, if this is the
case (within an energy or frequency band gap). Furthermore,
the LMS formulation provides us with the transmission and
reflection coefficients for a wave incident on a finite slab
of the crystal (it also provides the absorption coefficient
for the case of photons or phonons impinging on a lossy
periodic structure). These coefficients are easily measured
experimentally.

In the context of EM waves in artificial dielectrics, the LMS
method has been employed for the study of photonic crystals
and Mie-resonance-based metamaterials. Photonic crystals are
manmade periodic structures in 2D or 3D with the period
comparable to the wavelength of light, possessing an omni-
directional frequency band gap.10,11 The latter is a result of
the multiple interference of the EM waves within the photonic
crystal. The LMS method, in particular, has been mainly used
for the study of photonic crystals made by self-assembly,
such as opal-based crystals. On the other hand, metamaterials
are also manmade periodic structures, but their period is
several times smaller than the wavelength of light. Due to this
property, metamaterials mimic the response of a homogeneous
medium and, by a properly chosen geometry of the scatterers
comprising the (subwavelength) unit cell, they can exhibit
exotic properties, such as artificial magnetism,12 negative re-
fractive index (NRI),13 near-field amplification,14 cloaking,15

and perfect absorption.16 Mie-resonance-based metamaterials
are periodic structures consisting of scatterers of simple
geometry, such as 2D arrays of cylinders17,18 or 3D arrays of
spherical particles,19–28 exhibiting strong magnetic activity, as
well as NRI in the microwave and infrared regimes (for a recent
review, see Ref. 29). The emergence of artificial magnetism in
Mie-resonance-based metamaterials relies on the excitation of
Mie resonances on each individual particle of the metamaterial.
The LMS method has been employed in metamaterials of
spheres20–28 supplemented by effective-medium theories.30,31

Recently, a bottom-up approach for realizing Mie-
resonance-based metamaterials in the optical regime has been
proposed,32,33 wherein the required high-dielectric material
is formed by the self-organization of metallic nanoparticles
of few-nm radius. Such metamaterials have been realized by
template-assisted, colloidal self-organization, wherein clusters
of metallic nanoparticles reside within the voids of a 2D,
periodically perforated, dielectric slab,34 or within the trenches
of a 1D grating.35 The theoretical modeling of the above
metamaterials relies on treating the EM response of the
cluster of nanoparticles as a homogeneous body “cropped”
out of an infinitely periodic metamaterial.32–35 This approach
is potentially valid only when the metallic nanoparticles are
small enough (few nm) and the corresponding aggregates are
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sufficiently large (several hundreds of nm) so that surface
effects are negligible. For small aggregates containing tens or
few hundreds of metallic nanoparticles, most particles reside
at the surface of the cluster, rendering an effective-medium
approach inadequate.

Motivated by the above structures, we present a first-
principles study of the EM response of periodic structures
of cavities containing clusters (aggregates) of nanoparticles
by accurately taking into account all the multiple-scattering
processes involved: (a) among the gold nanoparticles within
the cluster, (b) between the cluster and the cavity, and
(c) among the repeating units (cavity + nanocluster) of the
metamaterial. The positions of the gold particles within the
aggregates are taken from a rigorous Monte Carlo simulation
of the self-organization of these particles, under the spherically
confining potential of the cavity. The multiple-scattering
theory of light within a single cavity + nanocluster provides
a total scattering matrix. Having found the latter matrix, we
embed it within the existing LMS formalism,7,8 which provides
us with the transmittance, reflectance, and absorbance of light
incident on one or many two-dimensional lattices (planes) of
clusters. Alternatively, the EM response can be studied by
means of the complex frequency band structure of infinitely
periodic metamaterials of clusters of particles. Besides the
apparent application of the present work in metamaterials
realized by template-assisted self-assembly, the formalism
presented below constitutes a significant extension of the
existing LMS formulations,8,36 enabling the study of periodic
structures with more than one scatterer in the 2D unit cell.

The paper is organized as follows: Sec. II describes the
multiple-scattering theory followed for the study of the optical
response of metamaterials consisting of cavities containing
nanoparticle clusters. In Sec. III, we apply the method to
the case of a silica-inverted opal containing clusters of
gold nanoparticles in its voids, while Sec. IV concludes the
paper.

II. THEORY

A. Multipole expansion of the EM field

Let us consider an harmonic EM wave of angular frequency
ω, which is described by its electric-field component,

E(r,t) = Re[E(r)exp(−iωt)]. (1)

In a homogeneous medium characterized by a dielectric
function ε(ω)ε0 and a magnetic permeability μ(ω)μ0, where ε0

and μ0 are the electric permittivity and magnetic permeability
of the vacuum, respectively, Maxwell equations imply that
E(r) satisfies a vector Helmholtz equation, subject to the
condition ∇ · E = 0, with a wave number q = ω/c, where
c = 1/

√
μεμ0ε0 = c0/

√
με is the velocity of light in the

medium. The spherical-wave expansion of E(r) is given
by37

E(r) =
∞∑
l=1

l∑
m=−l

{
aH

lmfl(qr)Xlm(r̂)

+ aE
lm

i

q
∇ × [fl(qr)Xlm(r̂)]

}
, (2)

where aP
lm (P = E,H ) are coefficients to be determined.

Xlm(r̂) are the so-called vector spherical harmonics,37 and fl

may be any linear combination of the spherical Bessel function
jl and the spherical Hankel function h+

l . The corresponding
magnetic induction B(r) can be readily obtained from E(r,t)
using Maxwell’s equations,

B(r) =
√

εμ

c0

∞∑
l=1

l∑
m=−l

{
aE

lmfl(qr)Xlm(r̂)

− aH
lm

i

q
∇ × [fl(qr)Xlm(r̂)]

}
, (3)

and we shall not write it down explicitly in what follows.

B. Scattering by a single scatterer

In this section, we present a brief summary of the solution
to the problem of EM scattering from a single sphere (Mie
scattering theory),37,38 along with an extension to the case of
irregular (nonphysical) solutions, which are necessary for a
wave emitted by the center of the sphere. We will make use of
the compact notation of Ref. 39 for the eigenfunctions and the
angular-momentum indices, which allows for easier computer
coding.

We consider a sphere of radius S, with its center at the
origin of coordinates, and assume that its electric permittivity
εs and/or magnetic permeability μs are different from those
(εh, μh) of the surrounding homogeneous medium. An EM
plane-wave incident on this scatterer is described, respectively,
by Eq. (2) with fl = jl (since the plane wave is finite
everywhere) and appropriate coefficients a0

L, where L denotes
collectively the indices P lm. That is,

E0(r) =
∑
L

a0
LJL(r), (4)

where

JElm(r) = i

qh

∇ × jl(qhr)Xlm(r̂),

(5)
JHlm(r) = jl(qhr)Xlm(r̂),

and qh = √
εhμhω/c0. The coefficients a0

L depend on the
amplitude, polarization, and propagation direction of the
incident EM plane wave.7,8,37

Similarly, the wave that is scattered from the sphere is
described by Eq. (2) with fl = h+

l , which has the asymp-
totic form appropriate to an outgoing spherical wave: h+

l ≈
(−i)l exp(iqhr)/iqhr , as r → ∞, and appropriate expansion
coefficients a+

L ; namely,

E+(r) =
∑
L

a+
L HL(r), (6)

where

HElm(r) = i

qh

∇ × h+
l (qhr)Xlm(r̂),

(7)
HHlm(r) = h+

l (qhr)Xlm(r̂).

The wave field for r > S is the sum of the incident and
scattered waves, i.e., Eout = E0 + E+. The spherical-wave
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expansion of the field EI for r < R (inside the sphere) is
obtained in a similar manner by the requirement that it be
finite at the origin (r = 0), i.e.,

EI (r) =
∑
L

aI
LJs

L(r), (8)

where Js
L(r) are given from Eq. (5) by replacing qh with

qs = √
εsμsω/c0.

By applying the requirement that the tangential com-
ponents of E and H be continuous at the surface of
the scatterer, we obtain a relation between the expan-
sion coefficients of the incident and the scattered field as
follows:

a+
L =

∑
L′

TLL′ a0
L′ , (9)

where TLL′ are the elements of the so-called scattering
transition T matrix.38 Equation (9) is valid for any shape of
scatterer; for spherically symmetric scatterers, each spherical
wave scatters independently of all others, which leads to a
transition T matrix that does not depend on m and is diagonal
in l, i.e., TLL′ = TLδLL′ . It is given by

TEl(ω)

=
{

jl(qsr) ∂
∂r

[rjl(qhr)] εs − jl(qhr) ∂
∂r

[rjl(qsr)] εh

h+
l (qhr) ∂

∂r
[rjl(qsr)] εh − jl(qsr) ∂

∂r
[rh+

l (qhr)]εs

}
r=S

,

(10)

THl(ω)

=
{

jl(qsr) ∂
∂r

[rjl(qhr)] μs − jl(qhr) ∂
∂r

[rjl(qsr)] μh

h+
l (qhr) ∂

∂r
[rjl(qsr)] μh − jl(qsr) ∂

∂r
[rh+

l (qhr)]μs

}
r=S

.

(11)

The expansion coefficients aI
L of the field inside the spheres

are given in terms of a0
L by a similar expression,

aI
L =

∑
L′

CLL′ a0
L′ . (12)

The C matrix is also independent of m and diagonal in l, i.e.,
CLL′ = CLδLL′ ; it is given in terms of TLL′ :

CEl(ω) =
√

εhμs

εsμh

[
jl(qhS)

jl(qsS)
+ h+

l (qhS)

jl(qsS)
TEl

]
, (13)

CHl(ω) = jl(qhS)

jl(qsS)
+ h+

l (qhS)

jl(qsS)
THl. (14)

In a similar manner, one can define a wave which is infinite
at the origin and matches continuously an outgoing spherical
wave of given L outside the sphere. For this purpose, the
electric field outside the sphere is written as

E0(r) =
∑
L

b0
LHL(r), (15)

and inside the sphere as

EI (r) =
∑
L

[
bI

LJs
L(r) + bI+

L Hs
L(r)

]
, (16)

where Hs
L(r) is given by Eq. (7) with qs instead of qh. Again,

by requiring that the tangential components of the electric and
magnetic fields be continuous on the surface of the sphere, one
can express bI

L and bI+
L in terms of b0

L as follows:

bI+
L =

∑
L′

QLL′ b0
L′ , bI

L =
∑
L′

PLL′ b0
L′ , (17)

where, similar to the T matrix, QLL′ and PLL′ are diagonal in
l and do not depend on m. They are provided by

QEl(ω) =
√

εhμs

εsμh

[
h+

l (qhS)

h+
l (qsS) + jl(qsS)VEl

]
, (18)

QEl(ω) = h+
l (qhS)

h+
l (qsS) + jl(qsS)VHl

, (19)

PEl(ω) = VElQEl, (20)

PHl(ω) = VHlQHl, (21)

and

VEl(ω) =
{

h+
l (qsr) ∂

∂r
[rh+

l (qhr)]εs − h+
l (qhr) ∂

∂r
[rh+

l (qsr)]εh

h+
l (qhr) ∂

∂r
[rjl(qsr)] εh − jl(qsr) ∂

∂r
[rh+

l (qhr)]εs

}
r=S

, (22)

VHl(ω) =
{

h+
l (qsr) ∂

∂r
[rh+

l (qhr)]μs − h+
l (qhr) ∂

∂r
[rh+

l (qsr)]μh

h+
l (qhr) ∂

∂r
[rjl(qsr)] μh − jl(qsr) ∂

∂r
[rh+

l (qhr)]μs

}
r=S

. (23)

C. Multiple scattering by a collection of spheres

Next we consider a collection of Ns nonoverlapping
spherical scatterers centered at sites Rn in a homogeneous
host medium. An outgoing vector spherical wave about Rn′

can be expanded in a series of incoming vector spherical waves
around Rn as follows:

HL′(r − Rn′ ) =
∑
L

�nn′
LL′JL(r − Rn). (24)

An outgoing vector spherical wave about Rn′ can be expanded
in a series of outgoing vector spherical waves around Rn as
follows:

HL′(r − Rn′) =
∑
L

�nn′
LL′HL(r − Rn), (25)

and similarly for incoming vector spherical waves,

JL′(r − Rn′) =
∑
L

�nn′
LL′JL(r − Rn). (26)
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Explicit formulas for the matrices � and � are given in
the Appendix. These matrices do not depend on the material
properties of the scatterers, but on their particular arrangement
in space. From Eq. (24), we can express an outgoing EM wave
about Rn′ ,

∑
L′ b

+n′
L′ HL′(r − Rn′ ), to an incoming EM wave

about Rn,
∑

L b
′n
L JL(r − Rn), as follows:

b
′n
L (n′) =

∑
L′

�nn′
LL′b

+n′
L′ . (27)

The wave scattered from the sphere at Rn is determined by the
total incident wave on this sphere, i.e.,

b+n
L =

∑
L′

T n
LL′

[
a0n

L′ +
∑
n′ �=n

b
′n
L′(n′)

]
, (28)

where T n
LL′ = T n

L δLL′ is the T matrix for the sphere at Rn,
and a0n

L are the spherical-wave expansion coefficients of an
externally incident wave. Equation (28) can be written as

∑
n′L′

[
δnn′δLL′ −

∑
L′′

T n
LL′′�

nn′
L′′L′

]
b+n′

L′ =
∑
L′

T n
LL′a

0n
L′ . (29)

The above equation is the basic equation of multiple scattering
and can be solved by standard linear-system numerical solvers,
or iteratively.40 The solution provides the scattering wave
b+n

L outgoing from each sphere of the collection for a given
externally incident wave a0n

L . Having calculated b+n
L from

Eq. (29), one can readily find the coefficients b
′n
L (n′) from

Eq. (27) and therefore the total incident wave to each sphere
of the collection given by the square brackets of Eq. (28).
Using the total incident wave as input to Eq. (12), one can
determine the multipole coefficients aI n

L within each sphere
of the collection. The corresponding electric field is given
similar to Eq. (16).

The electric field outside the spheres, Eout, is written as the
sum of the scattered field from all spheres plus the incident
wave field, i.e.,

Eout(r) = Esc(r) + E0(r), (30)

where the incident field E0 is given by Eq. (4), and Esc is given
as follows:

Esc(r) =
Ns∑

n=1

∑
L

b+n
L HL(r − Rn). (31)

In order to incorporate a cluster of spherical scatterers
within the existing LMS code as a single-scattering entity,
we need to calculate the scattering T matrix T cl

LL′ of the entire
cluster. It can be shown that the scattering matrix T cl

LL′ assumes
the form39

T cl
LL′ =

∑
nn′

∑
L′′L′′′

�0n
LL′′[(I − T�)−1T]nn′

L′′L′′′�
n′0
L′′′L′, (32)

where the matrix (I − T�) is the one appearing on the
left-hand side of Eq. (29). T cl

LL′ contains nondiagonal elements
in general. We note that alternative formulations of the EM
scattering by a finite number of scatterers have been developed
in the past.41 However, the formalism presented above is
suitable for embedding the T matrix of Eq. (32) in the existing
LMS formalism.

Tcl

Tcav

Ccav

a0

Tcav+cl

TTTTTTTTTclccllTcl

Qcav

b0

Pcav

FIG. 1. (Color online) Matrices involved for the calculation of the
total scattering matrix Tcav+cl of a cluster of particles within a cavity.
A plane wave (corresponding to multipole coefficients a0) incident on
the cavity (without the cluster) is either scattered off of the cavity via
Tcav or enters the cavity via Ccav. A spherical wave (corresponding
to multipole coefficients b0) outgoing from the center of the cavity is
either scattered back at the boundary of the cavity via Pcav or escapes
the cavity via Qcav. The scattering matrix of the cluster is Tcl.

D. Multiple scattering in a spherical cavity

We assume that a cluster of scatterers described by a
Tmatrix, T cl, is embedded within a spherical cavity (see
Fig. 1), which is associated with a scattering matrix, T cav.
The system of the cavity containing the cluster of scatterers is
illuminated by a wave of the form of Eq. (4) with multipole
coefficients a0

L. This wave can be directly scattered off of the
cavity, producing an outgoing wave of the form of Eq. (6) with
multipole coefficients a+

L given by

a+
L =

∑
LL′

T cav
LL′a

0
L′ , (33)

or it can enter the cavity producing a wave in the manner of
Eq. (12), ∑

LL′
Ccav

LL′a
0
L′ , (34)

which is incident on the cluster of scatterers. The above wave is
scattered off the cluster via Tcl and then escapes the cavity via
the matrix Qcav [first of Eqs. (17)]. So, the second contribution
to the scattering waves of the cavity + nanocluster amounts to∑

L′
[QcavTclCcav]LL′a0

L′ . (35)

However, the wave outgoing from the cluster∑
L′[TclCcav]LL′a0

L′ can be scattered at the inner surface
of the cavity and return back to the cluster via the matrix Pcav

[second of Eqs. (17)], producing in this way a new incident
field on the cluster. The latter is again scattered off of the
cluster via Tcl and escapes the cavity via Qcav, producing a
wave of the form∑

L′
[QcavTclPcavTclCcav]LL′a0

L′ . (36)
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It can be easily understood that this process can be repeated
infinite times, giving rise to a series of multiple-scattering
events: ∑

L′
[QcavTclCcav + QcavTclPcavTclCcav

+ QcavTclPcavTclPcavTclCcav + · · · ]LL′a0
L′

=
∑
L′

[QcavTcl(I + PcavTcl

+ PcavTclPcavTcl + · · · )Ccav]LL′a0
L′

=
∑
L′

[QcavTcl(I − PcavTcl)−1Ccav]LL′a0
L′ . (37)

The scattering matrix of the system cavity + nanocluster,
Tcav+cl, is the sum of Eqs. (33) and (37), i.e.,

Tcav+cl = Tcav + QcavTcl[I − PcavTcl]−1Ccav. (38)

The matrix Tcav+cl is then incorporated within the existing
layer-multiple-scattering formalism, allowing for the study of
periodic metamaterials where the repeating unit is a spherical
cavity containing a cluster of smaller scatterers.

III. AN EXAMPLE

We consider a metamaterial made from air cavities in
silica (SiO2), where each cavity contains a cluster of 100
nonoverlapping gold (Au) nanoparticles (see Fig. 2). The
positions of the gold particles within a cluster are taken
from a Monte Carlo simulation of the self-organization of
these particles under a spherically confining potential. All
particles have the same radius, S = 8.8 nm; the average radius
of the cluster is Scl = 42.67 nm while the cavity radius is

FIG. 2. (Color online) 3D orthorhombic metamaterial made of
air cavities in silica containing clusters of gold nanoparticles.
Each cluster consists of 100 nonoverlapping gold nanoparticles
of radius S = 8.8 nm in a nearly close-packed arrangement, with
cluster radius of 42.67 nm. Each cluster is placed at a center of a
cavity of radius 44 nm. The metamaterial is viewed as a succession of
(001) planes (square lattices) of clusters of gold NPs, parallel to the xy

plane. The lattice constant of each square lattice is ax = ay = 85.22
nm, while the lattice constant in the z direction is az = 87.86 nm.

Photon Energy (eV)

T
R
A

1.00

0.75

0.50

0.25

0.00
1 2 3 4 5 6

FIG. 3. (Color online) Transmittance (T), reflectance (R), and
absorbance (A) spectra for light incident normally on a single plane
of the metamaterial of Fig. 2.

Scav = 44 nm. The average interparticle distance is about
1.2 nm. The dielectric function of a single gold nanoparticle
(NP) is taken from experiment,42 with corrections accounting
for the electron scattering at the boundaries of a nanoparticle
[see Eqs. (3) and (4) of Ref. 43]. The metamaterial is a slightly
elongated cubic (orthorhombic) lattice viewed as a succession
of 2D square lattices of the above clusters of gold NPs, parallel
to the xy plane (see Fig. 3). The lattice constant of the 2D
square lattice is ax = ay = 85.22 nm, while the lattice constant
in the z direction is az = 87.86 nm.

In Fig. 3, we show the transmittance, reflectance, and
absorbance spectra for light incident normally on a single plane
of cavities of gold clusters. The nanoparticles are small enough
(8.8-nm radius) so that taking into account only the dipole
terms (lmax = 1) in the angular-momentum representation
suffices for achieving convergence in the absorption spectra.44

However, as the size of the nanoparticles increases, more terms
in the angular-momentum expansion (higher-order multipoles)
might be needed for a converged absorption spectra,45,46 but
not as many as required for having accurate results of quantities
related with the near field. In the plane-wave expansion of the
EM field,8 we have considered 21 reciprocal-lattice vectors.

As is evident from Fig. 3, a distinct local maximum of the
absorbance spectrum around 2.35 eV stems from the surface
plasmon resonance of a single gold nanoparticle. Above this
frequency, the absorbance spectrum exhibits a second, much
broader maximum (the corresponding transmittance curve
shows a broad minimum). As is evident from Fig. 4, for
metamaterial slabs with more than one plane of clusters of gold
nanoparticles, the absorbance curve increases dramatically:
the two maxima observed for a single plane (Fig. 3) merge
to a broad plateau for sufficiently thick slabs (eight planes or
more; see Fig. 4).

In Fig. 5, we compare the absorption properties with
different metamaterial designs in order to assess the effect
of the cavity (containing the nanoparticles). From Fig. 5,
it is evident that for a single plane of clusters of gold
nanoparticles, light absorption is more efficient in the case
where the nanoparticles are surrounded by the silica host, i.e.,
when they are not contained within a cavity. We also note
that this metamaterials design (i.e., lattice of clusters of gold
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N=1
N=2
N=4
N=8

1 52 3 4 6
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0.00
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e

photon Energy(eV)

FIG. 4. (Color online) Absorbance spectra for light incident
normally on finite slabs of the metamaterial of Fig. 3 of various
thicknesses (numbers of planes), as shown in the legend.

nanoparticles inside silica) is a much more efficient absorber
compared to a lattice of single gold nanoparticles of the
equivalent radius of 42.67 nm (the same as the average radius of
a cluster of 100 8.8-nm gold nanoparticles). And this is the case
despite the fact that a (inhomogeneous) cluster of nanoparticles
contains much less gold mass than homogeneous nanoparticles
of the same radius. For the case where the nanoparticles are
suspended in air, the overall absorption capability of both
metamaterial designs is more or less the same. It is worth
noting that, as shown in the inset of Fig. 5, even if we assume
that the loss factor of a 42.67-nm gold particle is the same as

0.6
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FIG. 5. (Color online) Absorbance spectra for light incident
normally on a single plane of a metamaterial of clusters of gold
nanoparticles embedded in a silica matrix (solid line), in air (dashed
line), and inside an air cavity in silica (dotted line, which is the same
as the corresponding line of Fig. 2). All three lines correspond to the
same cluster of gold nanoparticles. The gray lines refer to a plane
whose lattice sites are occupied by a single gold nanoparticle with
the same radius as the average radius (42.67 nm) of a cluster of gold
nanoparticles. The light (dark) gray line refers to the case where the
nanoparticle is embedded in silica (air). Inset: The solid line is the
same as the dark gray line of the main figure, while the dashed line
refers to the case where the loss factor of a gold nanoparticle of
radius 42.67 nm has been taken the same as the loss factor of a gold
nanoparticle of radius 8.8 nm.
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FIG. 6. (Color online) Complex frequency band structure normal
to the (001) surface of the orthorhombic metamaterial of Fig. 2. The
black [gray] lines correspond to 	kz = 	kz(ω) [
kz = 
kz(ω)]. The
shaded regions refer to the case where 	neff < 0.

that of a 8.8-nm particle (which, of course, is not true since
losses due to the scattering at the boundary of the particle
increase with decreasing particle radius), the corresponding
absorbance spectrum does not differ much from the case where
the correct loss factor for the 42.67-nm spheres has been taken
into account. This implies that the efficient light absorption
in the metamaterial of clusters of gold nanoparticles in silica
is due to the inhomogeneous nature of the scattering element
(cluster of spheres), as well as due to the strong coupling
among the 8.8-nm nanoparticles, which is also heralded by the
presence of a dielectric host (silica in our case) instead of air.

Finally, we examine the presence of regions with a negative
refractive index, neff < 0. In order to do so, we have calculated
the complex band structure (dispersion lines) normal to the
(001) surface for the (infinitely periodic) metamaterial of
Fig. 2 (air cavities+gold nanoparticles within the silica matrix).
Figure 6 shows the real [	kz = 	kz(ω)] and imaginary
[
kz = 
kz(ω)] dispersion lines of the above metamaterial.
We identify two spectral regions (shaded areas in Fig. 6)
where anomalous dispersion occurs, i.e., ∂ω/∂	kz < 0. The
latter would signify the occurrence of NRI if it had not been
for the significant amount of losses47 inherent in the gold
nanoparticles comprising the metamaterial under study.

IV. CONCLUSIONS

We have presented a layer-multiple-scattering method for
the study of metamaterials realized as 2D or 3D lattices of
cavities containing clusters of nanoparticles. It is a rigorous
electrodynamic theory since it takes into account all the
multiple-scattering processes experienced by light, which
involve scattering within the cluster of nanoparticles, between
the cluster and the cavity boundaries, and among the clusters
of nanoparticles within the metamaterial. The method has
been applied to the case of a lattice of air pores in silicon
containing clusters of gold nanoparticles. Thick slabs of the
above metamaterial act as highly efficient absorbers within the
spectral region of 2–4.5 eV, while, at the same time, exhibiting
anomalous dispersion over narrow spectral regions.

085119-6



LAYER-MULTIPLE-SCATTERING THEORY FOR . . . PHYSICAL REVIEW B 84, 085119 (2011)

ACKNOWLEDGMENTS

The research leading to these results has received funding from the European Union’s Seven Framework Programme (FP7/2007-
2013) under Grant No. 228455-NANOGOLD (Self-organized Nanomaterials for Tailored Optical and Electrical Properties).

APPENDIX

The matrix � for a vector field is given by6,39

�nn′
Elm;El′m′ = �nn′

Hlm;Hl′m′ = (ψlψl′)
−1

[
2α−m

l α−m′
l′ Gl′m′−1;lm−1(Rnn′ ; qh)

+mm′Gl′m′;lm(Rnn′ ; qh) + 2αm
l αm′

l′ Gl′m′+1;lm+1(Rnn′ ; qh)
]
, (A1)

�nn′
Hlm;El′m′ = −�nn′

Elm;Hl′m′ = (2l + 1)(ψlψl′)
−1

[ − 2α−m′
l′ γ m

l Gl′m′−1;l−1m−1(Rnn′ ; qh)

+m′ζm
l Gl′m′;l−1m(Rnn′ ; qh) + 2αm′

l′ γ −m
l Gl′m′+1;l−1m+1(Rnn′ ; qh)

]
, (A2)

where

ψl =
√

l(l + 1), (A3)

αm
l = 1

2 [(l − m)(l + m + 1)]1/2, (A4)

γ m
l = 1

2 [(l + m)(l + m − 1)]1/2/[(2l − 1)(2l + 1)]1/2, (A5)

ζm
l = [(l + m)(l − m)]1/2/[(2l − 1)(2l + 1)]1/2. (A6)

GLL′(Rnn′ ; qh) transforms an outgoing scalar spherical wave about Rn′ to a series of incoming scalar spherical waves around Rn.
It is given by

Glm;l′m′(Rnn′ ; qh) = 4π
∑
l′′m′′

(−1)(l−l′−l′′)/2(−1)m
′+m′′

Blm(l′′m′′; l′m′)h+
l′′(qhRnn′)Yl′′−m′′ (R̂nn′ ), (A7)

with

Blm(l′′m′′; l′m′) =
∫

d�Ylm(r̂)Yl′−m′ (r̂)Yl′′m′′(r̂). (A8)

Ylm(r̂) are the usual scalar spherical harmonics.37

The matrix � for a vector field is given by6,39

�nn′
Elm;El′m′ = �nn′

Hlm;Hl′m′ = (ψlψl′ )
−1

[
2α−m

l α−m′
l′ ξl′m′−1;lm−1(Rnn′ ; qh)

+mm′ξl′m′;lm(Rnn′ ; qh) + 2αm
l αm′

l′ ξl′m′+1;lm+1(Rnn′ ; qh)
]
, (A9)

�nn′
Hlm;El′m′ = −�nn′

Elm;Hl′m′ = (2l + 1)(ψlψl′)
−1[ − 2α−m′

l′ γ m
l ξl′m′−1;l−1m−1(Rnn′ ; qh)

+m′ζm
l ξl′m′;l−1m(Rnn′ ; qh) + 2αm′

l′ γ −m
l ξl′m′+1;l−1m+1(Rnn′ ; qh)

]
. (A10)

ξLL′(Rnn′ ; qh) transforms an outgoing (incoming) scalar spherical wave about Rn′ to a series of outgoing (incoming) scalar
spherical waves around Rn [see Eqs. (25) and (26)]. It is given by

ξlm;l′m′ (Rnn′ ; qh) = 4π
∑
l′′m′′

(−1)(−l+l′+l′′)/2(−1)m
′+m′′

Blm(l′′m′′; l′m′)jl′′(qhRnn′ )Yl′′−m′′ (R̂nn′). (A11)
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