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Phase diagram of hard board-like colloids from
computer simulations†

Stavros D. Peroukidis* and Alexandros G. Vanakaras
The rich mesophase polymorphism and the phase sequence of

board-like colloids depends critically on their shape anisometry.

Implementing extensive Monte Carlo simulations, we calculated the

full phase diagram of sterically interacting board-like particles, for a

range of experimentally accessible molecular dimensions/anisome-

tries of colloids of this shape. A variety of self organized mesophases

including uniaxial and biaxial nematics, smectic, cubatic and

columnar phases have been identified. Our results demonstrate

clearly that themolecular anisometry influences critically not only the

structure and the symmetry of themesophases but also, and perhaps

more interestingly, the phase sequence between them. New classes

of phase sequences such as nematic–nematic and, for the first time, a

direct transition from a discotic and a biaxial nematic to an orthog-

onal smectic A phase have been identified. The molecular geometry

requirements for such phase behavior have been located.
Colloidal suspensions of sterically interacting anisometric
particles exhibit a rich variety of mesophases and phase trans-
formations between them.1,2 The local structure and eventually
the macroscopic behavior of these self-organized anisotropic
uids are entropy driven since they are determined mainly by
excluded volume interactions.1,3,4 Recently, colloidal disper-
sions of board-like goethite particles were demonstrated2 to
exhibit, in addition to the usual uniaxial nematic phases, a
spontaneously formed stable biaxial nematic phase as well as a
series of nematic–nematic (N–N) phase transitions under the
inuence of external elds.5 At high concentrations these
systems exhibit smectic and/or columnar phases with struc-
tures that have not yet been unambiguously identied.
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The possibility of formation of stable biaxial nematic phases
by D2h-symmetric hard board-like particles with a so called
“dual shape”, i.e. particles having almost equal length to width
and width to thickness ratios, was predicted theoretically four
decades ago by Straley.6 Surprisingly, since then there have been
no computer simulation studies of this particularly simple
model with the exception of the simulations by Bates et al.7 In
these simulations, however, the orientation of the long axis of
the particles were completely aligned, thus preventing the
possibility of an orientationally isotropic uid. On the other
hand it has been shown that hard biaxial ellipsoids of certain
anisometries exhibit stable uniaxial and biaxial nematic
phases.8 However, as it has been pointed out by Bolhuis and
Frenkel,9 this system is unlikely to exhibit positionally ordered
liquid crystalline (LC) phases and indeed it does not.8 This is an
inherent weakness of the hard ellipsoid model, preventing the
study of the relative stability of the nematic state with respect to
the positionally ordered LC states, which are always present in
the phase sequence of real board-like colloidal suspensions.2

To overcome the weaknesses of the aforementioned models,
we model the board-like particles as hard spheroplatelets (SPs),
a tractable model introduced by Mulder10 for analytical calcu-
lations as a generalization of the well studied spherocylinder
model. A SP particle consists of a rectangular box with dimen-
sions (l � d) � (w � d) � d, capped at its corners by quarter
spheres of diameter d and half cylinders on its sides with
diameter d and length (l � d) or (w � d) forming a convex body
of orthorhombic symmetry (see Fig. 1). Without loss of gener-
ality we assume that l $ w$ d and assign a body xed frame as
shown in Fig. 1. The dimensionless length and width are given
by l* ¼ l/d and w* ¼ w/d respectively. When w* ¼ 1 the SP
particle becomes a spherocylinder with aspect ratio l* � 1; a
system whose phase diagram is well known for a wide range of
aspect ratios from the seminal works of Bolhuis and Frenkel9

and McGrother et al.11 At the w* ¼ l* limit the SP particle
transforms into a tetragonal spheroplatelet (D4h symmetry) and
becomes very similar to the tetragonal parallelepiped particles
simulated by John et al.12
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Fig. 1 Views of the simulated hard board spheroplatelet particles.

Fig. 2 The phase diagram of hard spheroplatelets as a function of their
molecular geometry parameters. Different colored regions correspond to
different phase sequences. The boundaries between the regions are estimates
inferred from the analysis of a large number of MC simulations at several SP
molecular geometries (l*,w*), (see ESI S1†). Straley's line is also plotted (black solid
line). The black circle corresponds to the critical molecular geometry (l*c,w

*
c)¼ (9,3).
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The phase behavior and the molecular organization of the
SPs is studied here by Metropolis Monte Carlo computer
simulations in the isothermal isobaric ensemble (NpT) using
variable size simulation boxes with periodic boundary condi-
tions.13 Most of the simulations were performed for N z 1000
particles although much larger systems were simulated in
certain cases. The pressure ( p*) versus packing fraction (h)
equation of state (EOS) of each simulated system in the (l*,w*)
space, was calculated with compression runs from the isotropic
phase. Here h ¼ Nn/�V is the packing fraction, n is the molecular
volume, p* ¼ pn/kBT is the reduced pressure and �V is the
ensemble average of the volume of the simulated system at p*
(representative EOS are given in ESI S2†). Expansion series from
highly packed ordered phases were performed as well to check
whether the observed phase sequence on compression includes
metastable (over-compressed) states. Since our prime interest in
this communication is the LC behavior of the SP systems, we
present results for particles with sizes in the range of 5# l* < 12
and 1 < w* < 12. SPs with l* < 5 freeze directly into crystalline
phases or into long lived glassy states. Systems with l* ¼ 5 and
w* < 2 exhibit, in accordance with previous studies, a rather
narrow range of stable smectic A (SmA) ordering before they
crystallize;9,11 mesomorphism is removed from the phase
sequence when w* > 2.

To trace the phase transition boundaries between the
isotropic and the nematic phase we have identied the orien-
tational symmetry of the phases and the associated order
parameters through diagonalization of the order tensors,8

Qa ¼ PN
i¼1ð3ðai$AÞðai$BÞ � dABÞ=2N, where a ¼ (x̂,ŷ,ẑ) is any of

the molecular symmetry axes and A,B denote the axes X̂,Ŷ ,Ẑ of
the simulation box. The onset of positionally ordered phases is
usually accompanied by clear density jumps in the p*–h EOS.
Visual inspection and combined analysis of the orientational/
positional order through the calculation of appropriate projec-
tions of the radial pair correlation functions,14 allows the loca-
tion of the phase transition pressures and an unambiguous
classication of the positionally ordered states.

The mesophases of different ordering exhibited by the
simulated systems in the range 5 # l* < 12 are: (i) two uniaxial
nematic phases, a calamitic (N+) and a discotic (N�) phase, with
the z- and the x-molecular axes aligned along the unique
Soft Matter
director respectively, (ii) two biaxial nematic phases (Nb+ and Nb�)
with the common alignment of the z- and x-molecular
axes dening the primary director in Nb+ and in Nb� respectively,
(iii) uniaxial SmA phases with the long z-molecular axis oriented
along the layer normal, (iv) columnar phases (ColX) either
uniaxial or biaxial with the x-molecular axis oriented along the
columns in all cases and (v) cubatic (Cub) mesophases.

Starting from the low pressure (packing fraction) isotropic
state (I) and compressing the systemsup to their crystallization or
vitrication pressures we calculated the complete phase diagram
in the w*–l* parameter space. It is presented in Fig. 2, where the
differently colored domains correspond to the following enan-
tiotropic phase sequences: I–[N+]–SmA, I–[Nb�–Nb+]–SmA,
I–N�–SmA, I–[N�]–ColX and I–Cub; the brackets here indicate
phases that may be absent from the phase transition sequence,
i.e. the notation I–[N+]–SmA means that direct I–SmA as well as
I–N+–SmA phase sequences are possible, as indicated by the
green and light blue colored regions in Fig. 2. Clearly the phase
diagram of Fig. 2 is symmetric with respect to the l* ¼ w* line.
The solid line (Straley's line) represents molecular geometries
with l* ¼ w*2 for which, according to theoretical consider-
ations,6,10 the particles are of “dual shape” – neither prolate nor
oblate – and biaxially ordered phases are expected.

The phase diagram of Fig. 2 reveals that the (l*c,w
*
c) z (9,3)

point corresponds to a critical molecular anisometry. At this
point the system exhibits a direct I–SmA phase transition on
compression. However, even a small deviation from this specic
molecular anisotropy, leads to severe changes in the phase
sequence/stability. To facilitate the discussion on the phase
behavior of particles with dimensions close to the critical
geometry we present in Fig. 3 three distinct topologies of the
p*–w* phase diagram corresponding to SPs having a reduced
This journal is ª The Royal Society of Chemistry 2013
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Fig. 3 Pressure vs.molecular width qualitative phase diagram topologies for the molecular lengths: (a) l* > l*c, (b) l*¼ l*c, and (c) l* < l*c. Representative snapshots of the
liquid crystalline phases are also shown.
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length l* slightly above (Fig. 3a), equal (Fig. 3b) and slightly
below (Fig. 3c) of the critical length l*c.

For lengths l* > l*c the rst ordered phases observed upon
compression are different types of nematics. The symmetry and
structure of the nematic phase depends on the width w*, see
Fig. 3a. Specically, for w* < w*

+ a calamitic nematic (N+) is
obtained, while for w* > w*

� the phase is discotic (N�). In both
cases the N–I phase transition has a weakly rst order character.
Here, w*

(+/�) are the l*-dependent critical SP widths that deter-
mine the limits of stability of the uniaxial nematic phases. For
SPs with widths in the narrow window w*

+ < w* < w*
� a stable

biaxial nematic phase enters into the phase sequence. The
values of w*

(+/�) are difficult to determine precisely from the
simulations due to the almost second order nature of the N–I
phase transition in this window. To exclude the possibility that
the biaxial nematic phases are artifacts due to the size of the
simulated systems, much larger systems (N z 4000) were
simulated and they conrmed our ndings. The long range
nature of the biaxial order of the Nb phases was conrmed with
the calculation of a series of rotationally invariant pair corre-
lation functions.14

Perhaps the most striking nding in this range of molecular
geometries is the crossover, Nb�–Nb+, between two distinct
biaxial nematic states (in Fig. 3a the crossover pressures are
indicated by the thin dotted line that divides the biaxial
window). These low and high pressure (packing fraction)
biaxial nematics, although of the same macroscopic symmetry,
differ in the molecular axis that determines the principal
director of the phase. This packing fraction driven change of
the main director of the nematic phase is expected to have
This journal is ª The Royal Society of Chemistry 2013
profound implications on the alignment and/or the response of
these phases upon the application of external aligning elds.
Such a N–N phase transition is supported by the Landau–de
Gennes theory for biaxial nematics,15 and was predicted for
systems of biaxial particles with the help of Onsager type
molecular theory by Taylor and Herzfeld16 and more recently
conrmed by Mart́ınez-Ratón et al.17 with a more elaborate
density functional theory that goes beyond the second-order
virial approximation.

All the nematic phases in the l* > l*c region transform upon
compression through a rst order phase transition, into either
SmA or Col mesophases. The observation, however, that not
only the N+ phase but the biaxial and, for a narrow range of
reduced molecular widths w*

� < w* < ~w*
�, the N� phase as well,

transform into uniaxial (rod-like) SmA phases reveals a new
class of phase transitions which, to the best of our knowledge,
have not been reported previously for thermotropic or colloidal
mesophases. Here, ~w*

� denotes the molecular width that
determines the boundary between the N�–SmA and the N�–Col
phase sequences.

The biaxial nematic states are not present in systems with
molecular lengths l* < l*c (see Fig. 2 and 3c). For these molecular
elongations, the two uniaxial nematic phases are gradually
reduced into the ranges w* < w0*

+ and w* > w0*� for the rod- and
disc-like nematic phases respectively. In the intermediate range
w0*

+ < w* < w0*� nematicity is totally suppressed and a direct rst
order phase transition from the isotropic to a uniaxial SmA
phase is observed. l* z 6 corresponds to the lower molecular
length below which the nematic state disappears completely
from the phase sequence. For l* < 6 the systems condense from
Soft Matter
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the isotropic phase directly into (i) the SmA phase for w* < 2.5 or
(ii) cubatic mesophases for w* > 2.5 or (iii) the columnar phase
for molecular widths w* z l*. The Cub phases, consist of well
dened, short in length and highly ordered stacks of particles
forming mesophases without a long range nematic-like orien-
tational order. The cubatic-like ordering always appears
through a strong rst order phase transition either compressing
the isotropic phase or expanding highly ordered, close packed
states, usually with appreciable hysteresis (see ESI S3†). We note
here, that the thermodynamic stability of the cubatic meso-
phases of the l* < 6 systems is still under investigation. For a
detailed discussion on the stability of the cubatic mesophase
see ref. 18–20.

For l* < l*c the N� phase appears in the phase sequence for
w* > w0*� and, as in the case with l* > l*c, for a narrow range of
molecular widths (w0*� < w* < ~w*

�) it transforms upon
compression into the SmA phase. The I–N�–Col phase sequence
is observed when w* > ~w*

�, (the ~w*
� boundary is indicated by the

dashed line in Fig. 2). In the region w0*� < w* < ~w*
� the N� phase

is thermodynamically stable for a small range of pressures
(packing fractions). For these pressures the extent of SmA or Col
ordering uctuations in the simulated N� phases are compa-
rable with the size of the simulation box and this makes the
precise determination of the ~w*

� -boundary difficult. For
molecular geometries close to the ~w*

� line the competition
between SmA and Col ordering, in combination with the
unavoidable molecular size polydispersity in real systems is
expected to enhance the stability of the nematic state in favor of
the positionally ordered states.7,21

Our results suggest that at l*c z 9 (see Fig. 3b) the lines w*
+/�

and w0*
+/� converge onto the critical point (l*c,w

*
c) at which the

biaxial nematic phase, the two uniaxial nematics and the SmA
phase meet. Interestingly the critical point (l*c,w

*
c) lies on Stra-

ley's line and denes, in terms of the molecular dimensions, the
lower limit of stability of the biaxial nematic phase. In other
words, according to our ndings, Straley's condition l* ¼ w*2

for biaxial nematics is valid provided that l* > 9.
In conclusion, by performing and analyzing a large number

of MC computational experiments we were able to trace the
phase boundaries of sterically interacting SPs, a prototype that
mimics the very basic features of real biaxial board-like
colloids. Despite its simplicity, the model reproduces remark-
ably well many experimental observations on colloidal
suspensions of board-like particles. We have identied new
types of phase transformations that include (i) a Nb�–Nb+

crossover and (ii) the direct transition from a discotic nematic
or a biaxial nematic to a conventional orthogonal SmA meso-
phase. Our results provide a robust framework and a well
dened reference system for understanding and interpreting
the presence of more complex interactions in real colloids upon
detecting deviations from the hard core model. These nearly
exact computational experiments on the phase behavior of hard
biaxial particles offer a comprehensive guide to experiments
towards the design of colloidal systems with a desired func-
tionality, as well as enhancing the theory for testing and
improving analytical molecular models using simple intermo-
lecular potentials.
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S1. Phase diagram of hard spheroplatelets with pairs  * *w ,l  in which simulations have 

been performed 

 

 

 

 

 

 

 

 

 

 

Fig. S1. The phase diagram of hard spheroplatelets (see main manuscript for details). The 

black squares on the diagram indicate the molecular geometries  * *w ,l  for which the actual 

simulations were performed. 
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S2. Representative Equations of State (EOS) 

We present characteristic pressure ( *p ) versus packing fraction ( ) equations of state for 

various  * *w ,l  pairs. More specifically, for the following enantiotropic phase sequences: (a) 

XI N Col  , (b) I N SmA   (c) I SmA , and (d) 
bI N SmA  (see Fig. S2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S2. Equations of state for systems consisting of SP particles (a)    1112* *w ,l , , (b) 

   4 12* *w ,l , , (c)    3 9* *w ,l ,  and (d)    11 11* *w ,l , . The solid symbols 

correspond to EOS calculated from compression runs from well equilibrated low-density 

isotropic states and the open symbols are EOS obtained by expansion from close packed 

states. The density jump accompanying the N I  phase transition is rather small in 

comparison with the corresponding jump along the N Sm  and I Sm  phase transitions. 
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S3. Cubatic phase for two representative  * *w ,l  molecular geometries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S3. Equations of state (pressure vs packing fraction) and representative snapshots of 

cubatic phases for systems consisting of SP particles with (a)    3 6* *w ,l ,  and (b) 

   5 5* *w ,l , . The solid and open symbols correspond to compression and expansion runs 

respectively. The snapshot in (a) corresponds to * 11.54p   and indicates the formation of 

well defined stacks of particles forming short biaxial columns or Smectic-like clusters,  while 

in (b) the particles form short uniaxial columns. In both cases the nematic-like orientational 

correlations diminish after a few molecular lengths. 

Note that the relative stability of the cubatic phases with respect to SmA and/or the Columnar 

phase is still an open issue. For a detailed discussion see refs[1-3]. 
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