Home > 2005, Paper > A simple theory of molecular organization in fullerene containing liquid crystals

A simple theory of molecular organization in fullerene containing liquid crystals

May 9th, 2010

S.D. Peroukidis, A.G. Vanakaras and D.J. Photinos, J. Chem. Phys., 123, 164904 (2005).


(Selected for the November 7, 2005 issue of Virtual Journal of Nanoscale Science & Technology.)

Abstract: Systematic efforts to synthesize fullerene-containing liquid crystals have produced a variety of successful model compounds. We present a simple molecular theory, based on the interconverting shape approach [Vanakaras and Photinos, J. Mater. Chem. 15, 2002 (2005)], that relates the self-organization observed in these systems to their molecular structure. The interactions are modeled by dividing each molecule into a number of submolecular blocks to which specific interactions are assigned. Three types of blocks are introduced, corresponding to fullerene units, mesogenic units, and nonmesogenic linkage units. The blocks are constrained to move on a cubic three-dimensional lattice and molecular flexibility is allowed by retaining a number of representative conformations within the block representation of the molecule. Calculations are presented for a variety of molecular architectures including twin mesogenic branch monoadducts of C-60, twin dendromesogenic branch monoadducts, and conical (badminton shuttlecock) multiadducts of C-60. The dependence of the phase diagrams on the interaction parameters is explored. In spite of its many simplifications and the minimal molecular modeling used (three types of chemically distinct submolecular blocks with only repulsive interactions), the theory accounts remarkably well for the phase behavior of these systems.

Categories: 2005, Paper Tags:
Comments are closed.